基于Dify的QA数据集构建(附代码)

2024-06-06 02:28
文章标签 代码 数据 构建 qa dify

本文主要是介绍基于Dify的QA数据集构建(附代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大模型相关目录

大模型,包括部署微调prompt/Agent应用开发、知识库增强、数据库增强、知识图谱增强、自然语言处理、多模态等大模型应用开发内容
从0起步,扬帆起航。

  1. 大模型应用向开发路径:AI代理工作流
  2. 大模型应用开发实用开源项目汇总
  3. 大模型问答项目问答性能评估方法
  4. 大模型数据侧总结
  5. 大模型token等基本概念及参数和内存的关系
  6. 大模型应用开发-华为大模型生态规划
  7. 从零开始的LLaMA-Factory的指令增量微调
  8. 基于实体抽取-SMC-语义向量的大模型能力评估通用算法(附代码)
  9. 基于Langchain-chatchat的向量库构建及检索(附代码)
  10. 一文教你成为合格的Prompt工程师
  11. 最简明的大模型agent教程
  12. 批量使用API调用langchain-chatchat知识库能力
  13. langchin-chatchat部分开发笔记(持续更新)
  14. 文心一言、讯飞星火、GPT、通义千问等线上API调用示例
  15. 大模型RAG性能提升路径
  16. langchain的基本使用
  17. 结合基础模型的大模型多源信息应用开发
  18. COT:大模型的强化利器
  19. 多角色大模型问答性能提升策略(附代码)
  20. 大模型接入外部在线信息提升应用性能
  21. 从零开始的Dify大模型应用开发指南
  22. 基于dify开发的多模态大模型应用(附代码)
  23. 基于零一万物多模态大模型通过外接数据方案优化图像文字抽取系统
  24. 快速接入stable diffusion的文生图能力
  25. 多模态大模型通过外接数据方案实现电力智能巡检(设计方案)
  26. 大模型prompt实例:知识库信息质量校验模块
  27. 基于Dify的LLM-RAG多轮对话需求解决方案(附代码)
  28. Dify大模型开发技巧:约束大模型回答范围
  29. 以API形式调用Dify项目应用(附代码)
  30. 基于Dify的QA数据集构建(附代码)

文章目录

  • 大模型相关目录
  • 需求介绍
  • 实现
    • Dify应用开发
      • API版代码


需求介绍

QA数据集,即问答数据集,对于测评大模型应用能力、指令微调具备一定的价值。
事实上,没有Dify时,完全可以调用API实现这一过程。但Dify进行实现后,该功能的复用、修改、配置效率都降进一步提升。
本文思路:
Dify应用开发——Dify开发细节介绍——数据情况——配合代码及文件

实现

Dify应用开发

在这里插入图片描述

prompt

你是一个问答数据生成专家,可以文本内容生成问答数据。
生成的问题和回答应口语形式描述出来。
每条问题要全面清晰,要求问题和回答的语句完整。
最后强调,以不同的角度生成2条问答数据。### 文本内容:[]压 low voltage,LV用于配电的交流系统中1000V及其以下的电压等级。
[来源:GB/T 2900.502008,2.1]### 生成问题:
问题1:低压的英文是什么
回答1:抵押的英文是low voltage
问题2:低压的含义是什么
回答2:低压是用于配电的交流系统中1000V及其以下的电压等级。### 文本内容:
5.3.12.2 工作负责人(监护人):a) 确认工作票所列安全措施正确、完备,符合现场实际条件,必要时予以补充;
b) 正确、安全地组织工作;
c) 工作前,对工作班成员进行工作任务、安全措施交底和危险点告知,并确保每个工作班成员都已签名确认;
d) 组织执行工作票所列由其负责的安全措施;### 生成问题:
问题1:工作负责人是否需要负责安全措施
回答1:工作负责人需要负责安全措施
问题2:工作成员不签名安全措施和危险点可以工作吗
回答2:工作成员不签名安全措施和危险点不可以工作### 文本内容:
{{#sys.query#}}

在这里插入图片描述
后处理
在这里插入图片描述
数据情况
在这里插入图片描述
实际代码

import timeimport pandas as pd
from openai import OpenAI
import os
import json
import requestsdef get_files_absolute_paths(folder_path):result = []# 确保给定的路径是存在的if not os.path.exists(folder_path):print(f"The path {folder_path} does not exist.")return []# 列出给定文件夹中的所有文件(不包括子文件夹)for file in os.listdir(folder_path):if os.path.isfile(os.path.join(folder_path, file)):# 构造文件的绝对路径file_path = os.path.abspath(os.path.join(folder_path, file))result.append(file_path)# 输出文件的绝对路径# print(file_path)return resultdef read_txt_file(file_path):with open(file_path, 'r', encoding='utf-8') as file:content = file.read()return contentdef get_llm_response(input_text):url = 'http://172.20.32.127:5001/v1/chat-messages'data = {"inputs": {},"query": input_text,"response_mode": "blocking","conversation_id": "","user": "abc-123",}json_data = json.dumps(data)response = requests.post(url,data=json_data,headers={"Content-Type": "application/json",'Authorization': f'Bearer '})response_text = response.textreturn json.loads(response_text)['answer']def cache(input_result):questions = []anwsers = []for index in range(len(input_result)):if index % 2 == 0:questions.append(input_result[index])else:anwsers.append(input_result[index])pd.DataFrame({'Q': questions, 'A': anwsers}).to_excel('QA_data.xlsx', index=False)folder_path = r'C:\Users\12258\Desktop\聊城电网相关文档\all'
files_path = get_files_absolute_paths(folder_path)result = []
for file_path in files_path:time.sleep(1)file_content = read_txt_file(file_path)llm_response = get_llm_response(file_content)print(type(llm_response),llm_response)for i in llm_response[1:-1].split(','):result.append(i.strip('"'))# print(result)cache(result)

API版代码

from llm_ask.ask_Tongyi import *
import os# 获取指定目录下所有文件的绝对路径列表
def get_files_in_directory(directory):result = []# 遍历指定目录下的所有文件和文件夹for root, dirs, files in os.walk(directory):# 只处理文件,不处理文件夹for file in files:# 获取文件的完整路径file_path = os.path.join(root, file)# 打印文件路径或进行其他操作# print(file_path)result.append(file_path)return result# 由json文件绝对路径读取单个json文件获取其文件名称和标题
def read_single_json(json_file_path:str)->str:title = json_file_path.split('\\')[-1][:-5]with open(json_file_path, 'r', encoding='utf-8') as file:data = str(json.load(file))return title,data# 以追加方式向指定的txt文件存入内容
def wirte_txt(txt_file_path,data):with open(txt_file_path,'a',encoding='utf-8') as f:f.write(data)f.write('\n\n')# 对llm返回的结果进行处理
def adjust_result(llm_result):llm_result_text = llm_result['text']return llm_result_textprompt_modules = ['''你是一个问答数据生成专家,可以就上述json数据生成问答数据。本次提问关注json格式中的 {ziduan} 字段,该字段是指{ziduan_describe}。生成的问题和回答应口语形式描述出来。每条问题要全面清晰,注明是对{zhengce}的{ziduan}进行提问。最后强调,以不同的角度生成3条问答数据以上。问题及答案符合口语习惯,采取如下格式:根据{zhengce}请回答问题1:回答1\n\n根据{zhengce}请回答问题2:回答2\\n\\n...]。'''
]ziduans = ['办理结果名称','承办机构','法定办结时限','受理时间、地点','咨询渠道','投诉渠道'
]ziduan_describes = ['所要办理的文件','办理该事项的政府机关部门名称','办理该文件所需的最大时限','办理该文件时,机关部门的工作地点和工作时间段','该事项相关的咨询渠道','该事项相关的投诉渠道'
]ziduan_indexs = range(len(ziduans))# exe
ask_tyqw = TongyiAPI()directory = r'C:\Users\12258\Desktop\zwllm_data_v240320\approval_data_300'  # 目录路径
file_paths = get_files_in_directory(directory)
for file_path in file_paths[5:]:title, json_data = read_single_json(file_path)prompt_data = json_datafor index in ziduan_indexs:prompt_module = prompt_modules[0].format(zhengce=title,ziduan=ziduans[index],ziduan_describe=ziduan_describes[index])prompt = prompt_data + '\n' + prompt_modulellm_result = ask_tyqw.get_one_response_by_prompt(prompt)print(llm_result)llm_adjust_result = adjust_result(llm_result)mid = directory.replace('approval_data_300','approval_data_300_ask_txt')+'\\'+title+'.txt'wirte_txt(mid, llm_adjust_result)
import requests
import json
import dashscope
from dashscope import Generation
from http import HTTPStatusclass TongyiAPI:def __init__(self):API_KEY = 'sk-'dashscope.api_key = API_KEYself.gen = Generation()def get_one_response_by_prompt(self, prompt):response = self.gen.call(model=dashscope.Generation.Models.qwen_turbo,prompt=prompt)# The response status_code is HTTPStatus.OK indicate success,# otherwise indicate request is failed, you can get error code# and message from code and message.if response.status_code == HTTPStatus.OK:# print(response.output)  # The output textprint(response.usage)  # The usage informationreturn response.outputelse:print(response.code)  # The error code.print(response.message)  # The error message.

这篇关于基于Dify的QA数据集构建(附代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1034840

相关文章

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

一文详解如何从零构建Spring Boot Starter并实现整合

《一文详解如何从零构建SpringBootStarter并实现整合》SpringBoot是一个开源的Java基础框架,用于创建独立、生产级的基于Spring框架的应用程序,:本文主要介绍如何从... 目录一、Spring Boot Starter的核心价值二、Starter项目创建全流程2.1 项目初始化(

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

使用Java实现通用树形结构构建工具类

《使用Java实现通用树形结构构建工具类》这篇文章主要为大家详细介绍了如何使用Java实现通用树形结构构建工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录完整代码一、设计思想与核心功能二、核心实现原理1. 数据结构准备阶段2. 循环依赖检测算法3. 树形结构构建4. 搜索子

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个