TensorFlow | 使用Tensorflow带你实现MNIST手写字体识别

2024-06-05 19:48

本文主要是介绍TensorFlow | 使用Tensorflow带你实现MNIST手写字体识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

github:https://github.com/MichaelBeechan
CSDN:https://blog.csdn.net/u011344545

涉及代码:https://github.com/MichaelBeechan/Learning_TensorFlow-Kaggle_MNIST 欢迎Fork和Star

Learning_TensorFlow-Kaggle_MNIS

一步步带你通过项目(MNIST手写识别)学习入门TensorFlow以及神经网络的知识

**

TF_Variable:TensorFlow入门

**

# -*- coding:utf-8 -*-
"""
Name: Michael Beechan
School: Chongqing University of Technology
Time: 2018.10.4
Description: tensorflow变量初始化
https://baike.baidu.com/item/TensorFlow/18828108?fr=aladdin
"""
import tensorflow as tf
# 变量定义
w = tf.Variable([[0.5, 1.0]])
x = tf.Variable([[2.0], [1.0]])
# 矩阵乘法
y = tf.matmul(w, x)
print(y)# 函数
norm = tf.random_normal([2, 3], mean = -1, stddev = 4)
c = tf.constant([[1, 2], [3, 4], [5, 6]])
shuff = tf.random_shuffle(c)  # shuffle洗牌
sess = tf.Session()
print(sess.run(norm))
print(sess.run(shuff))
# 将numpy的一些数据转换为tensorflow能用的类型
import numpy as np
a = np.zeros((3, 3))
ta = tf.convert_to_tensor(a)
print(sess.run(ta))# 创建一个变量 并用for循环对变量进行赋值操作
num  =tf.Variable(0, name="count")
new_value = tf.add(num, 10)
op = tf.assign(num, new_value)
print(op)
# 初始化全局变量
init_op = tf.global_variables_initializer()
# 定义运行会话
with tf.Session() as sess:sess.run(init_op)print(sess.run(num))for i in range(5):sess.run(op)print(sess.run(num))# 通过feed设置placeholder的值
# 声明变量是不赋值,计算时进行赋值  使用feed
input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)
value_new = tf.multiply(input1, input2)with tf.Session() as sess:print(sess.run(value_new, feed_dict={input1:23.0, input2:11.0}))

**

Kaggle_mnist

**
使用softMax作为激活函数,交叉熵做损失函数,梯度下降法优化的单层神经网络学习识别
准确率:88%左右

#-*- coding:utf-8 -*-
"""
Name: Michael Beechan
School: Chongqing University of Technology
Time: 2018.10.4
Description: Kaggle MINIST 手写图片识别  Digit Recognizer
http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/mnist_beginners.html
"""
"""
一、数据的准备
二、模型的设计
三、代码实现
28*28 = 784 的二维数组
训练数据和测试数据,都可以分别转化为[42000,769]和[28000,768]的数组
模型建立:
1)使用一个最简单的单层的神经网络进行学习
2)用SoftMax来做为激活函数
3)用交叉熵来做损失函数
4)用梯度下降来做优化方式
"""#88.45% 识别正确率
import pandas as pd
import numpy as np
import tensorflow as tf#加载数据
train = pd.read_csv("train.csv")
images = train.iloc[:, 1:].values
#labels_flat = train[[0]].values.ravel()
labels_flat = train.iloc[:, 0].values.ravel()#输入处理
images = images.astype(np.float)
images = np.multiply(images, 1.0 / 255.0)
print("输入数据的数量:(%g, %g)" % images.shape)
images_size = images.shape[1]
images_width = images_height = np.ceil(np.sqrt(images_size)).astype(np.uint8)
print("图片的长 = {0}\n图片的高 = {1}".format(images_width, images_height))x = tf.placeholder('float', shape=[None, images_size])#结果处理
labels_count = np.unique(labels_flat).shape[0]
print('结果的种类 = {0}'.format(labels_count))
y = tf.placeholder('float', shape=[None, labels_count])#One-Hot编码 :离散特征处理——独热编码  scikit_learn有封装了现成的编码函数OneHotEncoder()
def dense_to_one_hot(labels_dense, num_calsses):num_labels = labels_dense.shape[0]index_offset = np.arange(num_labels) * num_calsseslabels_one_hot = np.zeros((num_labels, num_calsses))#flat返回的是一个迭代器labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1return labels_one_hotlabels = dense_to_one_hot(labels_flat, labels_count)
labels = labels.astype(np.uint8)
print('结果的数量:({0[0]}, {0[1]})'.format(labels.shape))#数据划分
VALIDATION_SIZE = 2000validation_images = images[:VALIDATION_SIZE]
validation_labels = labels[:VALIDATION_SIZE]train_images = images[VALIDATION_SIZE:]
train_labels = labels[VALIDATION_SIZE:]batch_size = 100
n_batch = len(train_images)//batch_size#建立神经网络
weight = tf.Variable(tf.zeros([784, 10]))
biases = tf.Variable(tf.zeros([10]))
result = tf.matmul(x, weight) + biases
prediction = tf.nn.softmax(result)loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=y, logits=prediction))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)init = tf.global_variables_initializer()correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(prediction, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))with tf.Session() as sess:sess.run(init)for epoch in range(50):for batch in range(n_batch):batch_x = train_images[batch * batch_size:(batch+1) * batch_size]batch_y = train_labels[batch * batch_size:(batch+1) * batch_size]sess.run(train_step, feed_dict={x:batch_x, y:batch_y})accuracy_n = sess.run(accuracy, feed_dict={x:validation_images, y:validation_labels})print("第"+str(epoch+1)+"轮,准确度为:" + str(accuracy_n))```**

CNN_mnist

卷积神经网络——卷积层1+池化层1+卷积层2+池化层2+全连接1+Dropout层+输出层
准确率:训练20 accuracy is 0.984

#-*- coding:utf-8 -*-
"""
Name: Michael Beechan
School: Chongqing University of Technology
Time: 2018.10.4
Description: MINIST Digit Recognizer CNN
https://www.zhihu.com/question/52668301
"""
#卷积层1+池化层1+卷积层2+池化层2+全连接1+Dropout层+输出层
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plot
from tensorflow.examples.tutorials.mnist import input_data
import pandas as pd#Add data
train = pd.read_csv("train.csv")
test = pd.read_csv("test.csv")#Get data and deal data  astype()转换数据类型
x_train = train.iloc[:, 1:].values
x_train = x_train.astype(np.float)
x_train = np.multiply(x_train, 1.0 / 255.0)#Get image width and height
image_size = x_train.shape[1]
images_width = images_height = np.ceil(np.sqrt(image_size)).astype(np.uint8)print('数据样本大小:(%g, %g)' % x_train.shape)
print('图像的维度大小:{0}'.format(image_size))
print('图像长度:{0}\n高度:{1}'.format(images_width, images_height))#Get data labels
labels_flat = train.iloc[:, 0].values.ravel()
#对于一维数组或者列表,unique函数去除其中重复的元素,并按元素由大到小返回一个新的无元素重复的元组或者列表
labels_count = np.unique(labels_flat).shape[0]#One-Hot function
def dense_to_one_hot(labels_dense, num_classes):num_labels = labels_dense.shape[0]index_offset = np.arange(num_labels) * num_classeslabels_one_hot = np.zeros((num_labels, num_classes))labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1return labels_one_hot#one-hot deal labels
labels = dense_to_one_hot(labels_flat, labels_count)
labels = labels.astype(np.uint8)print('标签({0[0]}, {0[1]})'.format(labels.shape))
print('图像标签Example:[{0}] --> {1}'.format(25, labels[25]))#Divide train data to train and validation
VALIDATION_SIZE = 2000
train_images = x_train[VALIDATION_SIZE:]
train_labels = labels[VALIDATION_SIZE:]validation_images = x_train[:VALIDATION_SIZE]
validation_labels = labels[:VALIDATION_SIZE]#set batch size and get the sum total of batch
batch_size = 100
n_batch = len(train_images) // batch_size#define Empty variable (data)x: 784 (labels)y: 10
x = tf.placeholder(tf.float32, [None, 784])
y = tf.placeholder(tf.float32, [None, 10])#define function to deal data
def weight_variable(shape):#initial weight --- normal distribution#一个截断的产生正太分布的函数,就是说产生正太分布的值如果与均值的差值大于两倍的标准差,那就重新生成initial = tf.truncated_normal(shape, stddev=0.1)return tf.Variable(initial)def bias_variable(shape):# initial bias -- nonzeroinitial = tf.constant(0.1, shape=shape)return tf.Variable(initial)#packaging TensorFlow 2D convolution
def conv2D(x, W):return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
#packaging Tensorflow Pooling layer
def max_pool_2x2(x):return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')#Transform input data to 4D tensor, 2 and 3 is width and height, 4 is color
x_image = tf.reshape(x, [-1, 28, 28, 1])#compute 32 features 3*3 patch
w_conv1 = weight_variable([3, 3, 1, 32])
b_conv1 = bias_variable([32])#28*28 images conv step-size is 1   2*2 max pool
#After pool [28/2, 28/2] = [14, 14] the second pool [14/2, 14/2] = [7, 7]
#conv data
h_conv1 = tf.nn.relu(conv2D(x_image, w_conv1) + b_conv1)
#pool result
h_pool1 = max_pool_2x2(h_conv1)#On the previous basis, generate 64 features
w_conv2 = weight_variable([6, 6, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2D(h_pool1, w_conv2) + b_conv2)#max_pool 2*2 --> [7, 7]
h_pool2 = max_pool_2x2(h_conv2)
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])#Fully connected neural network  1024 Neural
w_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, w_fc1) + b_fc1)#Dropout
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)#1024 to 10D output
w_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.matmul(h_fc1_drop, w_fc2) + b_fc2#build loss function --> cross entropy
#tf.nn.softmax_cross_entropy_with_logits
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels = y, logits=y_conv))
#optimizing para
train_step_1 = tf.train.AdadeltaOptimizer(learning_rate=0.1).minimize(loss)#compute accuracy
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_conv, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))#Set the filename parameter to save the model
global_step = tf.Variable(0, name='globle_step', trainable=False)
saver  =tf.train.Saver()#initial variable
init = tf.global_variables_initializer()#train
with tf.Session() as sess:sess.run(init)# saver.restore(sess, "model.ckpt-12")# iter 20for epoch in range(1, 20):for batch in range(n_batch):# each times get one data patch to trainbatch_x = train_images[(batch) * batch_size:(batch+1) * batch_size]batch_y = train_labels[(batch) * batch_size:(batch+1) * batch_size]# the most important step -->sess.run(train_step_1, feed_dict={x:batch_x, y:batch_y, keep_prob:0.5})# each period compute accuracyaccuracy_n = sess.run(accuracy, feed_dict={x:validation_images, y:validation_labels, keep_prob:1.0})print("The " + str(epoch+1) + "th, accuracy is " + str(accuracy_n))# save train model# global_step.assign(epoch).eval()# saver.save(sess, "model.ckpt", global_step=global_step)

接下来改进方案进一步提高准确率。。。。。使用大神的自归一化神经网络

这篇关于TensorFlow | 使用Tensorflow带你实现MNIST手写字体识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1034009

相关文章

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

使用SQL语言查询多个Excel表格的操作方法

《使用SQL语言查询多个Excel表格的操作方法》本文介绍了如何使用SQL语言查询多个Excel表格,通过将所有Excel表格放入一个.xlsx文件中,并使用pandas和pandasql库进行读取和... 目录如何用SQL语言查询多个Excel表格如何使用sql查询excel内容1. 简介2. 实现思路3