开关电源基本原理1

2024-06-05 18:20
文章标签 基本原理 开关电源

本文主要是介绍开关电源基本原理1,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

内容概述

关于电感

认识电感

电感充电

电感储能

电感充电

电感参数

电感放电

利用电感升压

电感电流波形

伏秒法则

电流纹波率

电感电流三种导电模式

电流纹波率与频率的关系

电流纹波率与电感值的关系

电感值与电感体积

电路纹波率r的最优值

电感值与电感体积


内容概述

内容将会分为以下几个方面,分几部分讲解,具体内容如下:

电感特性:电流斜率,饱和电流。

电流纹波率

伏秒积与伏秒法则

Boost升压原理

开关电源三种工作模式


关于电感

认识电感

关于电感我们在书上知道的是,

(1)电感能通直流,阻交流 ;(2)电感电流不能突变;

(3)电感的感抗(等效阻抗):R=2πfL 适用于正弦信号激励的电路计算;

电感的电流方程:

电感两端恒定电压时, 电感电流以V/L斜率线性上升或下降

电感充电

假设电池内阻极小,开关按下后,电感两端电压等于电池电压,电感电流以12V/100uH的斜率线性上升。 若开关一直按着不放,将会怎样?电感烧毁?电感电流无限大?


电感储能

电感器中流过电流就会储存能量,电感以磁场的形式储存能量。

电感储能为:

电感充电时,随着电流的增加,能量以电流平方倍的关系增加,但一个实体电感储能并不是无限大,能量主要存储在磁芯中(而不是线圈中),磁芯体积越大,存储的能量越多(与磁芯材质也有一定关系)

一定体积的电感,当电流大到一定程度,其储存的能量也达到上限,电流再增加,其能量不再增加。这种现象称为电感饱和。

电感饱和后,其储能方程仍然有效,若电流线性增加,电感量会以指数倍减小。

电感饱和后,其电感量减小,会产生严重的发热。

电感充电

假设t1时刻电感饱和,其电感量减小,电流斜率增加。电感开始发热。

在实际使用中,应避免电感饱和。(或说磁芯饱和) 电感器除标称电感值之外,还有一个参数就是饱和电流Isat,应选择Isat比电路中实际电流大的电感器

若电路中电感器有发热现象,则说明电感器有饱和现象发生,应更换一个感量相同但体积更大的电感。

电感参数

如淘宝网上,正规厂家的电感器都标有电感量和电感电流两个参数

电感放电

电阻R给了电感电流释放回路,电感电流方向仍然不变,但仔细分析,发现 电感两端的电压方向发生了突变!原因是电感充电时是电池的负载,电流从高电位向低电位流动,而电感放电时候,电感作为电源,其电流是由低电位向高电位流动的! 电感两端的电压值等于电阻上电压值,假如t1时刻,电感电流为1A,则电阻电流也为1A,电阻电压为1V,电感电压也为1V。此后电感电流因放电而逐渐减小,电感电压也逐渐减小。若电阻值为10欧、100欧、1K欧又怎样?!阻值∞又如何?

总结:电感由充电到放电时, 其电流不会突变,但电压极 性瞬时改变,电压大小取决于 与电感并联的等效电阻的大小。

实际上,在电感无并联的负载时候,相当于负载阻值无穷大,电感电流为了能找到通路,会不断增加电感两端电压。直至击穿空气,使得能量得以释放!击穿空气时,等效负载阻值不是无穷大,由于电压很高,能量释放斜率极大。


利用电感升压

开关导通时候,D1二极管反偏,电感电压左正右负(如图所示)。 开关关闭时,电感电压左负右正,这时候电感右端电压为VIN+VL,产生高于输入的电压。使二极管正偏。因而能升压。 图中电容值相对较大,在一个开关周期内电压变化很小,因此对电感来说,放电时也是恒压放电,电感电流线性下降。


电感电流波形

三种拓扑电路,无论开关导通时还是截止时,电感两端电压都恒定(其实有微小变化,电容容量越大,电压变化越小),因此,电感电流上升斜率为一常数,下降斜率也是一常数。也就是说,在开关周期性导通和关闭时,电感电流波形是一锯齿波(或三角波,取决于占空比)。

Uon:电感充电时候电感两端电压;Uoff:电感放电时候电感两端电压。

电路达到稳定后,电感电流纹波

伏秒法则

电路达到稳定后(即输出电压稳定后)电感每个周期内充电能量等于释放能量,每个周期电感电流起始值都相等,充满电后的电流峰值也相等。

对于给定的输入输出电压,其Uon、ton为常数, 即Et为常数,说明电感量大小与电流纹波成反比。 电感量越大,电流纹波越小。


电流纹波率

电流纹波率

电流纹波率是电感电流交流分量与直流分量的比值。


电感电流三种导电模式

r越小,说明电流纹波相对也较小,则输出电压纹波相应也较小。 一般,电流纹波率r取0.4左右为最佳。

电流纹波率与频率的关系

相同输入、 输出电压、 输出电流、 电感值下, 开关频率越高, 电流纹波率越小

电流纹波率与电感值的关系

相同输入、 输出电压、 输出电流、 开关频率下, 电感值越大, 电流纹波率越小

相同输出电流、 相同电感值、 相同开关频率下, 电感电压越大, 电流纹波率越大

电感值与电感体积

电感值与电流斜率有关。        

电感体积与储能最大值有关,与饱和电流有关。

电路纹波率r的最优值

r的最优值为0.4左右

电感值与电感体积

为保持最优电流纹波率r

★开关频率越高,所需电感值越小,电感体积越小。

★负载电流越大,所需电感值越小,体积越大。

这篇关于开关电源基本原理1的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1033818

相关文章

防盗链的基本原理与实现

我的实现防盗链的做法,也是参考该位前辈的文章。基本原理就是就是一句话:通过判断request请求头的refer是否来源于本站。(当然请求头是来自于客户端的,是可伪造的,暂不在本文讨论范围内)。首先我们去了解下什么是HTTP Referer。简言之,HTTP Referer是header的一部分,当浏览器向web服务器发送请求的时候,一般会带上Referer,告诉服务器我是从哪个页面链接过来的,服务

【CSS in Depth 2 精译_023】第四章概述 + 4.1 Flexbox 布局的基本原理

当前内容所在位置(可进入专栏查看其他译好的章节内容) 第一章 层叠、优先级与继承(已完结) 1.1 层叠1.2 继承1.3 特殊值1.4 简写属性1.5 CSS 渐进式增强技术1.6 本章小结 第二章 相对单位(已完结) 2.1 相对单位的威力2.2 em 与 rem2.3 告别像素思维2.4 视口的相对单位2.5 无单位的数值与行高2.6 自定义属性2.7 本章小结 第三章 文档流与盒模型(已

AI学习指南深度学习篇-带动量的随机梯度下降法的基本原理

AI学习指南深度学习篇——带动量的随机梯度下降法的基本原理 引言 在深度学习中,优化算法被广泛应用于训练神经网络模型。随机梯度下降法(SGD)是最常用的优化算法之一,但单独使用SGD在收敛速度和稳定性方面存在一些问题。为了应对这些挑战,动量法应运而生。本文将详细介绍动量法的原理,包括动量的概念、指数加权移动平均、参数更新等内容,最后通过实际示例展示动量如何帮助SGD在参数更新过程中平稳地前进。

Zookeeper基本原理

1.什么是Zookeeper?         Zookeeper是一个开源的分布式协调服务器框架,由Apache软件基金会开发,专为分布式系统设计。它主要用于在分布式环境中管理和协调多个节点之间的配置信息、状态数据和元数据。         Zookeeper采用了观察者模式的设计理念,其核心职责是存储和管理集群中共享的数据,并为各个节点提供一致的数据视图。在Zookeeper中,客户端(如

Filter基本原理和使用

https://www.cnblogs.com/xdp-gacl/p/3948353.html 一、Filter简介   Filter也称之为过滤器,它是Servlet技术中最激动人心的技术,WEB开发人员通过Filter技术,对web服务器管理的所有web资源:例如Jsp, Servlet, 静态图片文件或静态 html 文件等进行拦截,从而实现一些特殊的功能。例如实现URL级别的权限访问控

开关电源纹波测试方法

开关电源纹波测试是评估开关电源性能的重要手段,我们都知道开关电源中稳定的输出电压是交流电通过整流、稳压、滤波等处理后得到的稳定输出,虽然经过了处理,但直流电平上还是会有周期性和随机性的杂波信号,这些我们不需要的部分就是纹波。开关电源中存在纹波是无法避免的,因此在开关电源测试中输出纹波的测试必不可少。 以下是开关电源纹波测试的具体方法和步骤: 测试方法 开关电源纹波测试一般

PN8016SSC-R1B非隔离5V300mA小功率开关电源芯片

PN8016SSC-R1B集成PFM控制器及800V高雪崩能力智能功率MOSFET,用于外部元器件精简的小功率非隔离开关电源,输出电压可通过FB电阻调整。PN8016内置800V高压启动与自供电模块,实现系统快速启动、超低待机、自供电功能。该芯片提供了完整的智能化保护功能,包括过载保护,欠压保护,过温保护。另外PN8016的降频调制技术有助于改善EMI特性。 PN8016SSC-R1B产品特点:

golang学习笔记02——gin框架及基本原理

目录 1.前言2.必要的知识3.路由注册流程3.1 核心数据结构3.2 执行流程3.3 创建并初始化gin.Engine3.4 注册middleware3.5 注册路由及处理函数(1)拼接完整的路径参数(2)组合处理函数链(3)注册完成路径及处理函数链到路由树 3.6 服务端口监听 4. 请求处理5. 请求绑定和响应渲染5.1. 请求绑定5.2 响应渲染 结束语 1.前言 g

DDS基本原理--FPGA学习笔记

DDS信号发生器原理: `timescale 1ns / 1ps//// Company: // Engineer: // // Create Date: 2024/09/04 15:20:30// Design Name: hilary// Module Name: DDS_Module//module DDS_Module(Clk,Reset_n,Fword,

小琳Python课堂:Python高并发实现的基本原理(高阶版)

大家好,这里是小琳Python课堂! 今天,我们将从高阶视角深入探讨Python高并发实现的基本原理,特别是线程安全性、线程同步和原子性这三个核心概念。这些概念对于构建复杂、高效的多线程应用程序至关重要。 线程安全性 首先,让我们深入理解线程安全性。线程安全性涉及到在多线程环境中对共享资源的正确访问。在Python中,由于全局解释器锁(GIL)的存在,真正的并行执行需要通过多进程实现。然而,即