Framework源码分析(三):ActivityThread

2024-06-05 16:18

本文主要是介绍Framework源码分析(三):ActivityThread,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在ActivityManagerService这一篇博客中,我们已经了解AMS在Android系统中是管理系统中Activity的重要类,他通过Binder进程间通信的方式去调度Activity,从而操作Activity的生命周期。那么在这一篇博客中,我们继续通过认识ActivityThread来进一步了解Activity的创建和启动的原理。

简述App启动流程

APP启动流程

从图中的流程来看,首先用户在Android桌面中发起针对某个应用程序的点击事件之后:
(1)LauncherActivity通过Binder进程间通信的方式将应用的信息通过Intent的方式传递给AMS,由AMS进行调度。
(2)如果系统中不存在该进程时,AMS将会请求Zygote服务去fork一个子进程,成功后返回一个pid给AMS,并由AndroidRuntime机制调起ActivityThread中的main()方法。
(3)紧接着,应用程序的Main Looper被创建,ActivityThread被实例化成为对象并将Application的信息以进程间通信的方式再次回馈给AMS。
(4)AMS接收到客户端发来的请求数据之后,首先将应用程序绑定,并启动应用程序的Activity,开始执行Activity的生命周期。

1. 应用程序的入口

ActivityThread的Main方法是应用程序进程的入口。先贴上代码:

    public static void main(String[] args) {Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "ActivityThreadMain");SamplingProfilerIntegration.start();// CloseGuard defaults to true and can be quite spammy.  We// disable it here, but selectively enable it later (via// StrictMode) on debug builds, but using DropBox, not logs.CloseGuard.setEnabled(false);Environment.initForCurrentUser();// Set the reporter for event logging in libcoreEventLogger.setReporter(new EventLoggingReporter());// Make sure TrustedCertificateStore looks in the right place for CA certificatesfinal File configDir = Environment.getUserConfigDirectory(UserHandle.myUserId());TrustedCertificateStore.setDefaultUserDirectory(configDir);Process.setArgV0("<pre-initialized>");Looper.prepareMainLooper();ActivityThread thread = new ActivityThread();thread.attach(false);if (sMainThreadHandler == null) {sMainThreadHandler = thread.getHandler();}if (false) {Looper.myLooper().setMessageLogging(newLogPrinter(Log.DEBUG, "ActivityThread"));}// End of event ActivityThreadMain.Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);Looper.loop();throw new RuntimeException("Main thread loop unexpectedly exited");}

在这里需要解释一下,这部分代码都干了哪些事儿:
(1)初始化应用程序中需要使用到的系统路径

Environment.initForCurrentUser();

(2)设置进程名称

Process.setArgV0("<pre-initialized>");

(3)在这里为应用程序的主线程创建了Looper。

Looper.prepareMainLooper();

thread.getHandler()保存了主线程的Handler

if (sMainThreadHandler == null) {sMainThreadHandler = thread.getHandler(); 
}

通过Looper.loop()的调用进入消息循环

Looper.loop();

(4)实例化ActivityThread对象,并通过attach()方法将APP的信息通过进程间通信的方式传递给AMS进行绑定。在下面我们会详细的讲下attach()方法。

ActivityThread thread = new ActivityThread();
thread.attach(false);

2. ApplicationThread

在attach()方法中,可以找到如下代码:

private void attach(boolean system) {sCurrentActivityThread = this;mSystemThread = system;if (!system) {...// 以上省略RuntimeInit.setApplicationObject(mAppThread.asBinder());final IActivityManager mgr = ActivityManagerNative.getDefault();try {mgr.attachApplication(mAppThread);} catch (RemoteException ex) {throw ex.rethrowFromSystemServer();}...// 以下省略}
}
// 实例化应用程序进程对象
final ApplicationThread mAppThread = new ApplicationThread();

首先,将mAppThread对象转换成为binder对象并将其作为应用程序先report给VM,该应用程序就能够获得VM反馈的一些异常和错误。然后通过获得Client端的代理对象,将mAppThread对象作为参数传递给AMS进行调度处理。

ApplicationThread继承了ApplicationThreadNative类,而ApplicationThreadNative又继承了Binder,那么它就拥有了进程间通信的特质,于此同时它最终又实现了IApplicationThread接口,该接口实现了操作App生命周期的各种方法回调。

    @Overridepublic final void attachApplication(IApplicationThread thread) {synchronized (this) {int callingPid = Binder.getCallingPid();final long origId = Binder.clearCallingIdentity();attachApplicationLocked(thread, callingPid);Binder.restoreCallingIdentity(origId);}}
    private final boolean attachApplicationLocked(IApplicationThread thread,int pid) {// Find the application record that is being attached...  either via// the pid if we are running in multiple processes, or just pull the// next app record if we are emulating process with anonymous threads....// 省略以上部分代码try {ProfilerInfo profilerInfo = profileFile == null ? null: new ProfilerInfo(profileFile, profileFd, samplingInterval, profileAutoStop);// 通过AMS调用bindApplication()方法将进程绑定thread.bindApplication(processName, appInfo, providers, app.instrumentationClass,profilerInfo, app.instrumentationArguments, app.instrumentationWatcher,app.instrumentationUiAutomationConnection, testMode,mBinderTransactionTrackingEnabled, enableTrackAllocation,isRestrictedBackupMode || !normalMode, app.persistent,new Configuration(mConfiguration), app.compat,getCommonServicesLocked(app.isolated),mCoreSettingsObserver.getCoreSettingsLocked());updateLruProcessLocked(app, false, null);app.lastRequestedGc = app.lastLowMemory = SystemClock.uptimeMillis();} catch (Exception e) {// todo: Yikes!  What should we do?  For now we will try to// start another process, but that could easily get us in// an infinite loop of restarting processes...Slog.wtf(TAG, "Exception thrown during bind of " + app, e);app.resetPackageList(mProcessStats);app.unlinkDeathRecipient();startProcessLocked(app, "bind fail", processName);return false;}... // 省略以下部分代码return true;}

AMS拿到mAppThread的对象之后,首先调用bindApplication()的方法将应用程序绑定,并通过应用程序发送的Activity生命周期的信号对应实现Activity生命周期的操作。

在这里大家可能会思考一个问题就是:Activity是如何执行自己的生命周期的。这个问题我先给自己埋一个坑,在未来的文章中,我把这个问题作为一个章节继续深入讲解。

这篇关于Framework源码分析(三):ActivityThread的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1033549

相关文章

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Java汇编源码如何查看环境搭建

《Java汇编源码如何查看环境搭建》:本文主要介绍如何在IntelliJIDEA开发环境中搭建字节码和汇编环境,以便更好地进行代码调优和JVM学习,首先,介绍了如何配置IntelliJIDEA以方... 目录一、简介二、在IDEA开发环境中搭建汇编环境2.1 在IDEA中搭建字节码查看环境2.1.1 搭建步

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专