通过ssr-echarts,服务端生成echarts图

2024-06-05 15:12
文章标签 服务端 生成 echarts ssr

本文主要是介绍通过ssr-echarts,服务端生成echarts图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ssr-echarts :一个开源项目,它能够服务端渲染 ECharts 图表,并直接生成 PNG 图片返回。该项目提供了多种主题,并且支持 GET 和 POST 请求。如果参数较多,建议使用 POST 方法。用户可以自己部署这个服务。

1. 服务端安装ssr-echarts服务.

gitlab地址:ssr-echarts: 服务端渲染echarts,直接生成PNG图片返回,可用于发送邮件等。可以设置宽度、高度、主题,包含15种主题。

1.1 SSR-ECHARTS介绍

用于服务端渲染生成echarts图片。可以使用Get或Post。如果是GET需要UrlEncode。如果参数较多建议使用POST,通过后端转发buffer。

主题:light,dark,chalk,essos,halloween,infographic,macarons,purple-passion,roma,romantic,shine,vintage,walden,westeros,wonderland

需要自己部署,源网站已经关闭无法访问。

1.2 部署方式:

Docker部署

环境:Docker

指令:

docker pull lz1998/ssr-echarts

docker run -d -p 3000:3000 lz1998/ssr-echarts

1.3 本地npm部署

环境:nodejs 12

安装依赖:npm instsall

运行方式:PORT=3000 npm run serve

1.4 使用说明

发送请求:

METHOD:POST/GET

URL:http://localhost:3000/

HEADER:Content-Type:application/json

BODY:

{"theme": "macarons","width": 800,"height": 600,"xAxis": {"type": "category","data": ["1","1","1","1","1","1","1"]},"yAxis": {"type": "value"},"series": [{"data": [820, 932, 901, 934, 1290, 1330, 1320],"type": "line"}]
}

2. 使用示例

2.1  曲线图

请求curl:

curl --location --request POST 'http://172.16.8.51:3000/' \
--header 'Content-Type: application/json' \
--data-raw '{"theme": "macarons","width": 800,"height": 600,"xAxis": {"type": "category","data": ["1","1","1","1","1","1","1"]},"yAxis": {"type": "value"},"series": [{"data": [820, 932, 901, 934, 1290, 1330, 1320],"type": "line"}]
}'

2.2 环装饼图

请求curl:

curl --location --request POST 'http://172.16.8.51:3000/' \
--header 'Content-Type: application/json' \
--data-raw ' {"angleAxis": {},"radiusAxis": {"type": "category","data": ["Mon", "Tue", "Wed","Thu"],"z": 10},"polar": {},"series": [{"type": "bar","data": [1, 2, 3, 4],"coordinateSystem": "polar","name": "A","stack": "a","emphasis": {"focus": "series"}},{"type": "bar","data": [2, 4, 6, 8],"coordinateSystem": "polar","name": "B","stack": "a","emphasis": {"focus": "series"}},{"type": "bar","data": [1, 2, 3, 4],"coordinateSystem": "polar","name": "C","stack": "a","emphasis": {"focus": "series"}}],"legend": {"show": true,"data": ["A","B", "C"]}
}'

2.3 桑基图

curl --location --request POST 'http://172.16.8.51:3000/' \
--header 'Content-Type: application/json' \
--data-raw ' {"title": {"text": "Node Align Left"},"tooltip": {"trigger": "item","triggerOn": "mousemove"},"animation": false,"series": [{"type": "sankey","emphasis": {"focus": "adjacency"},"nodeAlign": "right","data": [
{"name":"Agricultural '\''waste'\''"},
{"name":"Bio-conversion"},
{"name":"Liquid"},
{"name":"Losses"},
{"name":"Solid"},
{"name":"Gas"},
{"name":"Biofuel imports"},
{"name":"Biomass imports"},
{"name":"Coal imports"},
{"name":"Coal"},
{"name":"Coal reserves"},
{"name":"District heating"},
{"name":"Industry"},
{"name":"Heating and cooling - commercial"},
{"name":"Heating and cooling - homes"},
{"name":"Electricity grid"},
{"name":"Over generation / exports"},
{"name":"H2 conversion"},
{"name":"Road transport"},
{"name":"Agriculture"},
{"name":"Rail transport"},
{"name":"Lighting & appliances - commercial"},
{"name":"Lighting & appliances - homes"},
{"name":"Gas imports"},
{"name":"Ngas"},
{"name":"Gas reserves"},
{"name":"Thermal generation"},
{"name":"Geothermal"},
{"name":"H2"},
{"name":"Hydro"},
{"name":"International shipping"},
{"name":"Domestic aviation"},
{"name":"International aviation"},
{"name":"National navigation"},
{"name":"Marine algae"},
{"name":"Nuclear"},
{"name":"Oil imports"},
{"name":"Oil"},
{"name":"Oil reserves"},
{"name":"Other waste"},
{"name":"Pumped heat"},
{"name":"Solar PV"},
{"name":"Solar Thermal"},
{"name":"Solar"},
{"name":"Tidal"},
{"name":"UK land based bioenergy"},
{"name":"Wave"},
{"name":"Wind"}
],"links": [
{"source": "Agricultural '\''waste'\''", "target": "Bio-conversion",  "value": 124.729},
{"source": "Bio-conversion", "target": "Liquid",  "value": 0.597},
{"source": "Bio-conversion",  "target": "Losses",  "value": 26.862},
{"source": "Bio-conversion",  "target": "Solid",  "value": 280.322},
{"source": "Bio-conversion", "target": "Gas",  "value": 81.144},
{"source": "Biofuel imports", "target": "Liquid",  "value": 35},
{"source": "Biomass imports", "target": "Solid",  "value": 35},
{"source": "Coal imports", "target": "Coal", "value": 11.606},
{"source": "Coal reserves","target": "Coal", "value": 63.965},
{"source": "Coal", "target": "Solid", "value": 75.571},
{"source": "District heating", "target": "Industry", "value": 10.639},
{"source": "District heating", "target": "Heating and cooling - commercial", "value": 22.505},
{"source": "District heating", "target": "Heating and cooling - homes", "value": 46.184},
{"source": "Electricity grid", "target": "Over generation / exports", "value": 104.453},
{"source": "Electricity grid", "target": "Heating and cooling - homes", "value": 113.726},
{"source": "Electricity grid", "target": "H2 conversion", "value": 27.14},
{"source": "Electricity grid", "target": "Industry", "value": 342.165},
{"source": "Electricity grid", "target": "Road transport", "value": 37.797},
{"source": "Electricity grid", "target": "Agriculture", "value": 4.412},
{"source": "Electricity grid", "target": "Heating and cooling - commercial", "value": 40.858},
{"source": "Electricity grid", "target": "Losses", "value": 56.691},
{"source": "Electricity grid", "target": "Rail transport", "value": 7.863},
{"source": "Electricity grid", "target": "Lighting & appliances - commercial", "value": 90.008},
{"source": "Electricity grid", "target": "Lighting & appliances - homes", "value": 93.494},
{"source": "Gas imports", "target": "Ngas", "value": 40.719},
{"source": "Gas reserves", "target": "Ngas", "value": 82.233},
{"source": "Gas", "target": "Heating and cooling - commercial", "value": 0.129},
{"source": "Gas", "target": "Losses", "value": 1.401},
{"source": "Gas", "target": "Thermal generation", "value": 151.891},
{"source": "Gas", "target": "Agriculture", "value": 2.096},
{"source": "Gas", "target": "Industry", "value": 48.58},
{"source": "Geothermal", "target": "Electricity grid", "value": 7.013},
{"source": "H2 conversion", "target": "H2", "value": 20.897},
{"source": "H2 conversion", "target": "Losses", "value": 6.242},
{"source": "H2", "target": "Road transport", "value": 20.897},
{"source": "Hydro", "target": "Electricity grid", "value": 6.995},
{"source": "Liquid", "target": "Industry", "value": 121.066},
{"source": "Liquid", "target": "International shipping", "value": 128.69},
{"source": "Liquid", "target": "Road transport", "value": 135.835},
{"source": "Liquid", "target": "Domestic aviation", "value": 14.458},
{"source": "Liquid", "target": "International aviation", "value": 206.267},
{"source": "Liquid", "target": "Agriculture", "value": 3.64},
{"source": "Liquid", "target": "National navigation", "value": 33.218},
{"source": "Liquid", "target": "Rail transport", "value": 4.413},
{"source": "Marine algae", "target": "Bio-conversion", "value": 4.375},
{"source": "Ngas", "target": "Gas", "value": 122.952},
{"source": "Nuclear", "target": "Thermal generation", "value": 839.978},
{"source": "Oil imports", "target": "Oil", "value": 504.287},
{"source": "Oil reserves", "target": "Oil", "value": 107.703},
{"source": "Oil", "target": "Liquid", "value": 611.99},
{"source": "Other waste", "target": "Solid", "value": 56.587},
{"source": "Other waste", "target": "Bio-conversion", "value": 77.81},
{"source": "Pumped heat", "target": "Heating and cooling - homes", "value": 193.026},
{"source": "Pumped heat", "target": "Heating and cooling - commercial", "value": 70.672},
{"source": "Solar PV", "target": "Electricity grid", "value": 59.901},
{"source": "Solar Thermal", "target": "Heating and cooling - homes", "value": 19.263},
{"source": "Solar", "target": "Solar Thermal", "value": 19.263},
{"source": "Solar", "target": "Solar PV", "value": 59.901},
{"source": "Solid", "target": "Agriculture", "value": 0.882},
{"source": "Solid", "target": "Thermal generation", "value": 400.12},
{"source": "Solid", "target": "Industry", "value": 46.477},
{"source": "Thermal generation", "target": "Electricity grid", "value": 525.531},
{"source": "Thermal generation", "target": "Losses", "value": 787.129},
{"source": "Thermal generation", "target": "District heating", "value": 79.329},
{"source": "Tidal", "target": "Electricity grid", "value": 9.452},
{"source": "UK land based bioenergy", "target": "Bio-conversion", "value": 182.01},
{"source": "Wave", "target": "Electricity grid", "value": 19.013},
{"source": "Wind", "target": "Electricity grid", "value": 289.366}
],"lineStyle": {"color": "source","curveness": 0.5}}]}'

2.4 散点图

curl --location --request POST 'http://172.16.8.51:3000/' \
--header 'Content-Type: application/json' \
--data-raw '{"theme": "light","backgroundColor": "#FFFFFF",
"title": {
"text": "Male and female height and weight distribution",
"subtext": "Data from: Heinz 2003"
},
"grid": {
"left": "3%",
"right": "7%",
"bottom": "7%",
"containLabel": true
},
"tooltip": {"showDelay": 0,"axisPointer": {
"show": true,
"type": "cross",
"lineStyle": {
"type": "dashed",
"width": 1
}
}
},
"toolbox": {"feature": {
"dataZoom": {},
"brush": {
"type": ["rect", "polygon", "clear"]
}
}
},
"brush": {},
"legend": {
"data": ["Female", "Male"],
"left": "center",
"bottom": 10
},
"xAxis": [
{
"type": "value","scale": true,
"axisLabel": {
"formatter": "{value} cm"
},
"splitLine": {
"show": false
}
}
],
"yAxis": [
{
"type": "value",
"scale": true,
"axisLabel": {"formatter": "{value} kg"
},
"splitLine": {
"show": false
}
}
],
"series": [
{"name": "Female",
"type": "scatter",
"emphasis": {
"focus": "series"
},"data": [[161.2, 51.6], [167.5, 59.0], [159.5, 49.2], [157.0, 63.0], [155.8, 53.6],
[170.0, 59.0], [159.1, 47.6], [166.0, 69.8], [176.2, 66.8], [160.2, 75.2],
[172.5, 55.2], [170.9, 54.2], [172.9, 62.5], [153.4, 42.0], [160.0, 50.0],
[147.2, 49.8], [168.2, 49.2], [175.0, 73.2], [157.0, 47.8], [167.6, 68.8],
[159.5, 50.6], [175.0, 82.5], [166.8, 57.2], [176.5, 87.8], [170.2, 72.8],
[174.0, 54.5], [173.0, 59.8], [179.9, 67.3], [170.5, 67.8], [160.0, 47.0],
[154.4, 46.2], [162.0, 55.0], [176.5, 83.0], [160.0, 54.4], [152.0, 45.8],
[162.1, 53.6], [170.0, 73.2], [160.2, 52.1], [161.3, 67.9], [166.4, 56.6],
[168.9, 62.3], [163.8, 58.5], [167.6, 54.5], [160.0, 50.2], [161.3, 60.3],
[167.6, 58.3], [165.1, 56.2], [160.0, 50.2], [170.0, 72.9], [157.5, 59.8],
[167.6, 61.0], [160.7, 69.1], [163.2, 55.9], [152.4, 46.5], [157.5, 54.3],
[168.3, 54.8], [180.3, 60.7], [165.5, 60.0], [165.0, 62.0], [164.5, 60.3],
[156.0, 52.7], [160.0, 74.3], [163.0, 62.0], [165.7, 73.1], [161.0, 80.0],
[162.0, 54.7], [166.0, 53.2], [174.0, 75.7], [172.7, 61.1], [167.6, 55.7],
[151.1, 48.7], [164.5, 52.3], [163.5, 50.0], [152.0, 59.3], [169.0, 62.5],
[164.0, 55.7], [161.2, 54.8], [155.0, 45.9], [170.0, 70.6], [176.2, 67.2],
[170.0, 69.4], [162.5, 58.2], [170.3, 64.8], [164.1, 71.6], [169.5, 52.8],
[163.2, 59.8], [154.5, 49.0], [159.8, 50.0], [173.2, 69.2], [170.0, 55.9],
[161.4, 63.4], [169.0, 58.2], [166.2, 58.6], [159.4, 45.7], [162.5, 52.2],
[159.0, 48.6], [162.8, 57.8], [159.0, 55.6], [179.8, 66.8], [162.9, 59.4],
[161.0, 53.6], [151.1, 73.2], [168.2, 53.4], [168.9, 69.0], [173.2, 58.4],
[171.8, 56.2], [178.0, 70.6], [164.3, 59.8], [163.0, 72.0], [168.5, 65.2],
[166.8, 56.6], [172.7, 105.2], [163.5, 51.8], [169.4, 63.4], [167.8, 59.0],
[159.5, 47.6], [167.6, 63.0], [161.2, 55.2], [160.0, 45.0], [163.2, 54.0],
[162.2, 50.2], [161.3, 60.2], [149.5, 44.8], [157.5, 58.8], [163.2, 56.4],
[172.7, 62.0], [155.0, 49.2], [156.5, 67.2], [164.0, 53.8], [160.9, 54.4],
[162.8, 58.0], [167.0, 59.8], [160.0, 54.8], [160.0, 43.2], [168.9, 60.5],
[158.2, 46.4], [156.0, 64.4], [160.0, 48.8], [167.1, 62.2], [158.0, 55.5],
[167.6, 57.8], [156.0, 54.6], [162.1, 59.2], [173.4, 52.7], [159.8, 53.2],
[170.5, 64.5], [159.2, 51.8], [157.5, 56.0], [161.3, 63.6], [162.6, 63.2],
[160.0, 59.5], [168.9, 56.8], [165.1, 64.1], [162.6, 50.0], [165.1, 72.3],
[166.4, 55.0], [160.0, 55.9], [152.4, 60.4], [170.2, 69.1], [162.6, 84.5],
[170.2, 55.9], [158.8, 55.5], [172.7, 69.5], [167.6, 76.4], [162.6, 61.4],
[167.6, 65.9], [156.2, 58.6], [175.2, 66.8], [172.1, 56.6], [162.6, 58.6],
[160.0, 55.9], [165.1, 59.1], [182.9, 81.8], [166.4, 70.7], [165.1, 56.8],
[177.8, 60.0], [165.1, 58.2], [175.3, 72.7], [154.9, 54.1], [158.8, 49.1],
[172.7, 75.9], [168.9, 55.0], [161.3, 57.3], [167.6, 55.0], [165.1, 65.5],
[175.3, 65.5], [157.5, 48.6], [163.8, 58.6], [167.6, 63.6], [165.1, 55.2],
[165.1, 62.7], [168.9, 56.6], [162.6, 53.9], [164.5, 63.2], [176.5, 73.6],
[168.9, 62.0], [175.3, 63.6], [159.4, 53.2], [160.0, 53.4], [170.2, 55.0],
[162.6, 70.5], [167.6, 54.5], [162.6, 54.5], [160.7, 55.9], [160.0, 59.0],
[157.5, 63.6], [162.6, 54.5], [152.4, 47.3], [170.2, 67.7], [165.1, 80.9],
[172.7, 70.5], [165.1, 60.9], [170.2, 63.6], [170.2, 54.5], [170.2, 59.1],
[161.3, 70.5], [167.6, 52.7], [167.6, 62.7], [165.1, 86.3], [162.6, 66.4],
[152.4, 67.3], [168.9, 63.0], [170.2, 73.6], [175.2, 62.3], [175.2, 57.7],
[160.0, 55.4], [165.1, 104.1], [174.0, 55.5], [170.2, 77.3], [160.0, 80.5],
[167.6, 64.5], [167.6, 72.3], [167.6, 61.4], [154.9, 58.2], [162.6, 81.8],
[175.3, 63.6], [171.4, 53.4], [157.5, 54.5], [165.1, 53.6], [160.0, 60.0],
[174.0, 73.6], [162.6, 61.4], [174.0, 55.5], [162.6, 63.6], [161.3, 60.9],
[156.2, 60.0], [149.9, 46.8], [169.5, 57.3], [160.0, 64.1], [175.3, 63.6],
[169.5, 67.3], [160.0, 75.5], [172.7, 68.2], [162.6, 61.4], [157.5, 76.8],
[176.5, 71.8], [164.4, 55.5], [160.7, 48.6], [174.0, 66.4], [163.8, 67.3]
],
"markArea": {
"silent": true,
"itemStyle": {
"color": "transparent",
"borderWidth": 1,
"borderType": "dashed"
},
"data": [
[
{"name": "Female Data Range",
"xAxis": "min",
"yAxis": "min"
},
{
"xAxis": "max",
"yAxis": "max"
}
]
]
},
"markPoint": {
"data": [
{ "type": "max",  "name": "Max" },
{ "type": "min",  "name": "Min" }
]
},
"markLine": {
"lineStyle": {
"type": "solid"
},
"data": [{ "type": "average",  "name": "AVG" }, { "xAxis": 160 }]
}
},
{"name": "Male",
"type": "scatter",
"emphasis": {"focus": "series"
},"data": [[174.0, 65.6], [175.3, 71.8], [193.5, 80.7], [186.5, 72.6], [187.2, 78.8],
[181.5, 74.8], [184.0, 86.4], [184.5, 78.4], [175.0, 62.0], [184.0, 81.6],
[180.0, 76.6], [177.8, 83.6], [192.0, 90.0], [176.0, 74.6], [174.0, 71.0],
[184.0, 79.6], [192.7, 93.8], [171.5, 70.0], [173.0, 72.4], [176.0, 85.9],
[176.0, 78.8], [180.5, 77.8], [172.7, 66.2], [176.0, 86.4], [173.5, 81.8],
[178.0, 89.6], [180.3, 82.8], [180.3, 76.4], [164.5, 63.2], [173.0, 60.9],
[183.5, 74.8], [175.5, 70.0], [188.0, 72.4], [189.2, 84.1], [172.8, 69.1],
[170.0, 59.5], [182.0, 67.2], [170.0, 61.3], [177.8, 68.6], [184.2, 80.1],
[186.7, 87.8], [171.4, 84.7], [172.7, 73.4], [175.3, 72.1], [180.3, 82.6],
[182.9, 88.7], [188.0, 84.1], [177.2, 94.1], [172.1, 74.9], [167.0, 59.1],
[169.5, 75.6], [174.0, 86.2], [172.7, 75.3], [182.2, 87.1], [164.1, 55.2],
[163.0, 57.0], [171.5, 61.4], [184.2, 76.8], [174.0, 86.8], [174.0, 72.2],
[177.0, 71.6], [186.0, 84.8], [167.0, 68.2], [171.8, 66.1], [182.0, 72.0],
[167.0, 64.6], [177.8, 74.8], [164.5, 70.0], [192.0, 101.6], [175.5, 63.2],
[171.2, 79.1], [181.6, 78.9], [167.4, 67.7], [181.1, 66.0], [177.0, 68.2],
[174.5, 63.9], [177.5, 72.0], [170.5, 56.8], [182.4, 74.5], [197.1, 90.9],
[180.1, 93.0], [175.5, 80.9], [180.6, 72.7], [184.4, 68.0], [175.5, 70.9],
[180.6, 72.5], [177.0, 72.5], [177.1, 83.4], [181.6, 75.5], [176.5, 73.0],
[175.0, 70.2], [174.0, 73.4], [165.1, 70.5], [177.0, 68.9], [192.0, 102.3],
[176.5, 68.4], [169.4, 65.9], [182.1, 75.7], [179.8, 84.5], [175.3, 87.7],
[184.9, 86.4], [177.3, 73.2], [167.4, 53.9], [178.1, 72.0], [168.9, 55.5],
[157.2, 58.4], [180.3, 83.2], [170.2, 72.7], [177.8, 64.1], [172.7, 72.3],
[165.1, 65.0], [186.7, 86.4], [165.1, 65.0], [174.0, 88.6], [175.3, 84.1],
[185.4, 66.8], [177.8, 75.5], [180.3, 93.2], [180.3, 82.7], [177.8, 58.0],
[177.8, 79.5], [177.8, 78.6], [177.8, 71.8], [177.8, 116.4], [163.8, 72.2],
[188.0, 83.6], [198.1, 85.5], [175.3, 90.9], [166.4, 85.9], [190.5, 89.1],
[166.4, 75.0], [177.8, 77.7], [179.7, 86.4], [172.7, 90.9], [190.5, 73.6],
[185.4, 76.4], [168.9, 69.1], [167.6, 84.5], [175.3, 64.5], [170.2, 69.1],
[190.5, 108.6], [177.8, 86.4], [190.5, 80.9], [177.8, 87.7], [184.2, 94.5],
[176.5, 80.2], [177.8, 72.0], [180.3, 71.4], [171.4, 72.7], [172.7, 84.1],
[172.7, 76.8], [177.8, 63.6], [177.8, 80.9], [182.9, 80.9], [170.2, 85.5],
[167.6, 68.6], [175.3, 67.7], [165.1, 66.4], [185.4, 102.3], [181.6, 70.5],
[172.7, 95.9], [190.5, 84.1], [179.1, 87.3], [175.3, 71.8], [170.2, 65.9],
[193.0, 95.9], [171.4, 91.4], [177.8, 81.8], [177.8, 96.8], [167.6, 69.1],
[167.6, 82.7], [180.3, 75.5], [182.9, 79.5], [176.5, 73.6], [186.7, 91.8],
[188.0, 84.1], [188.0, 85.9], [177.8, 81.8], [174.0, 82.5], [177.8, 80.5],
[171.4, 70.0], [185.4, 81.8], [185.4, 84.1], [188.0, 90.5], [188.0, 91.4],
[182.9, 89.1], [176.5, 85.0], [175.3, 69.1], [175.3, 73.6], [188.0, 80.5],
[188.0, 82.7], [175.3, 86.4], [170.5, 67.7], [179.1, 92.7], [177.8, 93.6],
[175.3, 70.9], [182.9, 75.0], [170.8, 93.2], [188.0, 93.2], [180.3, 77.7],
[177.8, 61.4], [185.4, 94.1], [168.9, 75.0], [185.4, 83.6], [180.3, 85.5],
[174.0, 73.9], [167.6, 66.8], [182.9, 87.3], [160.0, 72.3], [180.3, 88.6],
[167.6, 75.5], [186.7, 101.4], [175.3, 91.1], [175.3, 67.3], [175.9, 77.7],
[175.3, 81.8], [179.1, 75.5], [181.6, 84.5], [177.8, 76.6], [182.9, 85.0],
[177.8, 102.5], [184.2, 77.3], [179.1, 71.8], [176.5, 87.9], [188.0, 94.3],
[174.0, 70.9], [167.6, 64.5], [170.2, 77.3], [167.6, 72.3], [188.0, 87.3],
[174.0, 80.0], [176.5, 82.3], [180.3, 73.6], [167.6, 74.1], [188.0, 85.9],
[180.3, 73.2], [167.6, 76.3], [183.0, 65.9], [183.0, 90.9], [179.1, 89.1],
[170.2, 62.3], [177.8, 82.7], [179.1, 79.1], [190.5, 98.2], [177.8, 84.1],
[180.3, 83.2], [180.3, 83.2]
],
"markArea": {
"silent": true,
"itemStyle": {
"color": "transparent",
"borderWidth": 1,
"borderType": "dashed"
},
"data": [
[
{"name": "Male Data Range",
"xAxis": "min",
"yAxis": "min"
},
{
"xAxis": "max",
"yAxis": "max"
}
]
]
},
"markPoint": {
"data": [
{ "type": "max",  "name": "Max" },
{ "type": "min",  "name": "Min" }
]
},
"markLine": {
"lineStyle": {
"type": "solid"
},
"data": [{ "type": "average", "name": "Average" }, { "xAxis": 170 }]
}
}
]
}'

3. 备注

 支持多个主题,可以修改 传参中的  theme  用来修改不同主题.

"theme": "light"

这篇关于通过ssr-echarts,服务端生成echarts图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1033408

相关文章

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

poj 1287 Networking(prim or kruscal最小生成树)

题意给你点与点间距离,求最小生成树。 注意点是,两点之间可能有不同的路,输入的时候选择最小的,和之前有道最短路WA的题目类似。 prim代码: #include<stdio.h>const int MaxN = 51;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int P;int prim(){bool vis[MaxN];

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D

hdu 1102 uva 10397(最小生成树prim)

hdu 1102: 题意: 给一个邻接矩阵,给一些村庄间已经修的路,问最小生成树。 解析: 把已经修的路的权值改为0,套个prim()。 注意prim 最外层循坏为n-1。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstri

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

poj 3723 kruscal,反边取最大生成树。

题意: 需要征募女兵N人,男兵M人。 每征募一个人需要花费10000美元,但是如果已经招募的人中有一些关系亲密的人,那么可以少花一些钱。 给出若干的男女之间的1~9999之间的亲密关系度,征募某个人的费用是10000 - (已经征募的人中和自己的亲密度的最大值)。 要求通过适当的招募顺序使得征募所有人的费用最小。 解析: 先设想无向图,在征募某个人a时,如果使用了a和b之间的关系

Thymeleaf:生成静态文件及异常处理java.lang.NoClassDefFoundError: ognl/PropertyAccessor

我们需要引入包: <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-thymeleaf</artifactId></dependency><dependency><groupId>org.springframework</groupId><artifactId>sp

Java Websocket实例【服务端与客户端实现全双工通讯】

Java Websocket实例【服务端与客户端实现全双工通讯】 现很多网站为了实现即时通讯,所用的技术都是轮询(polling)。轮询是在特定的的时间间隔(如每1秒),由浏览器对服务器发 出HTTP request,然后由服务器返回最新的数据给客服端的浏览器。这种传统的HTTP request 的模式带来很明显的缺点 – 浏 览器需要不断的向服务器发出请求,然而HTTP