NVIDIA DIGITS 学习笔记(参数)

2024-06-05 13:58

本文主要是介绍NVIDIA DIGITS 学习笔记(参数),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文主要记录了NVIDIA DIGITS的参数设置方法及其与Caffe中的参数的对应关系。


  • 数据集
  • 模型参数
  • DIGITS中的错误


数据集

手写体MNIST数据集的原始数据格式为:png,每幅图像大小为: 28×28 ,包含70K个手写体数字,共10类,其中60K为训练用样本(train+val),10K的测试样本(test)。本例中,从训练样本中随机抽取25%的数据作为验证集(val),使用digits生成的数据信息如下:

数据集属性
Image TypeGrayscale
Image Encodingpng
Image Dimensions 28×28
Number of Categories10
Number of Training Images45002
Number of Validation Images14998(25% of 60000)
Number of test Images10000

模型参数

模型选择LeNet(Original Paper 1998)

Solver Options意义示例值solver.prototxt计算
Training epochs训练代数:将训练用数据反复送入网络训练的次数30max_iter(Training epochs)×( numtrainsamples/batchsizetrain) ),如30*(45002/64)=21120
Snapshot interval (in epochs)快照间隔:是指训练多少代后进行一次快照记录1snapshot (numtrainsamples/batchsizetrain)×(Snapshotinterval) ,如:(45002/64)*1=704
Validation interval (in epochs)验证间隔1test_interval (numvalsamples/batchsizetest)(Validationinterval) ,如:(14998/100)*1=150
Random seed权重随机初始化种子[none]--
Batch size批处理大小[network defaults],网络默认值,训练:64,测试100--
Solver type优化方法Stochastic Gradient Descent (SGD)solver_typeSGD
Base Learning Rate学习率0.01base_lr0.01
Policy学习率策略Step Sizelr_policy“step”
Step Size步长33%stepsizemax_iter*Step Size,如:21120×33%=6970
GammaGamma参数0.1gamma0.1

DIGITS中的错误

在模型中,对于 LeNet模型,其网络参数有一个小错误,就是Softmax前面的那一层的输出为10而不是0,可以点击Customize修改,下图左是直接可视化的DIGITS的LeNet,右图是将Caffe中MNIST例子中的LeNet.prototxt文件内容直接复制到DIGITS的Customize中可视化后的结果:

DIGITS错误

这篇关于NVIDIA DIGITS 学习笔记(参数)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1033254

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

如何在页面调用utility bar并传递参数至lwc组件

1.在app的utility item中添加lwc组件: 2.调用utility bar api的方式有两种: 方法一,通过lwc调用: import {LightningElement,api ,wire } from 'lwc';import { publish, MessageContext } from 'lightning/messageService';import Ca

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

4B参数秒杀GPT-3.5:MiniCPM 3.0惊艳登场!

​ 面壁智能 在 AI 的世界里,总有那么几个时刻让人惊叹不已。面壁智能推出的 MiniCPM 3.0,这个仅有4B参数的"小钢炮",正在以惊人的实力挑战着 GPT-3.5 这个曾经的AI巨人。 MiniCPM 3.0 MiniCPM 3.0 MiniCPM 3.0 目前的主要功能有: 长上下文功能:原生支持 32k 上下文长度,性能完美。我们引入了