深度学习常见概念解释(二)—— 感受野:定义与计算公式

2024-06-05 08:36

本文主要是介绍深度学习常见概念解释(二)—— 感受野:定义与计算公式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

笔者在学习深度网络的过程中,发现感受野(Receptive Field)这个概念经常出现,且该概念在深度网络特征提取层的设计中至关重要,但其作用不易通过名字直接理解。因此,本文收集了相关信息,对感受野进行定义和解释,并通过公式和实例帮助读者更好地理解这一概念。

感受野的定义

感受野(Receptive Field)是神经网络中一个基本且重要的概念,尤其是在卷积神经网络(CNNs)中。它表示输入空间中一个像素影响输出空间中特定神经元的区域大小。具体解释为:在卷积神经网络中,感受野是指在输入图像上,一个神经元(或特征图中的一个元素)可以看到或响应的区域大小。更具体地说,感受野是指输入图像的一个区域,这个区域中的像素会影响到卷积层或池化层中特定位置的输出值。

感受野的重要性

  1. 特征提取能力:感受野越大,神经元可以看到的输入区域就越大,能够捕捉到更多的全局特征。
  2. 卷积层设计:了解感受野的大小有助于设计合适的卷积层、池化层和步幅,以确保网络能够有效地捕捉到输入图像的关键信息。
  3. 网络深度与宽度:感受野的大小与网络的深度和每层的卷积核大小相关,影响网络的整体结构设计。

感受野的计算

计算公式

一般情况下,对于任意层的感受野大小,可以使用以下公式递归计算:

R n = R n − 1 + ( k n − 1 ) ⋅ s n − 1 R_n = R_{n-1} + (k_n - 1) \cdot s_{n-1} Rn=Rn1+(kn1)sn1

其中:

  • R n R_n Rn 是第 n 层的感受野大小。
  • R n − 1 R_{n-1} Rn1 是第 n-1 层的感受野大小。
  • k n k_n kn 是第 n 层的卷积核大小。
  • s n − 1 s_{n-1} sn1 是第 n-1 层的步幅大小。

通过公式可知:感受野的计算取决于卷积层和池化层的排列方式、卷积核大小、步幅和填充方式。以下是一个简单的例子来说明如何计算感受野。

示例

假设一个简单的卷积神经网络有三层卷积,每层的卷积核大小为 3 × 3 3 \times 3 3×3,步幅为1,填充为1(即保持输出尺寸不变)。

  1. 第一层卷积

    • 输入尺寸: 32 × 32 32 \times 32 32×32
    • 卷积核大小: 3 × 3 3 \times 3 3×3
    • 填充:1
    • 输出尺寸: 32 × 32 32 \times 32 32×32(由于填充为1)

    感受野大小: 3 × 3 3 \times 3 3×3

  2. 第二层卷积

    • 输入尺寸: 32 × 32 32 \times 32 32×32
    • 卷积核大小: 3 × 3 3 \times 3 3×3
    • 填充:1
    • 输出尺寸: 32 × 32 32 \times 32 32×32(由于填充为1)

    感受野大小: 3 + ( 3 − 1 ) = 5 × 5 3 + (3 - 1) = 5 \times 5 3+(31)=5×5

  3. 第三层卷积

    • 输入尺寸: 32 × 32 32 \times 32 32×32
    • 卷积核大小: 3 × 3 3 \times 3 3×3
    • 填充:1
    • 输出尺寸: 32 × 32 32 \times 32 32×32(由于填充为1)

    感受野大小: 5 + ( 3 − 1 ) = 7 × 7 5 + (3 - 1) = 7 \times 7 5+(31)=7×7

总的来说,通过每层卷积核的计算,最终第三层的感受野为 7 × 7 7 \times 7 7×7,即输入图像中一个 7 × 7 7 \times 7 7×7 的区域会影响到第三层特征图中的一个神经元的输出。

通过这种递归计算方式,可以逐层计算网络中每个神经元的感受野,帮助设计和理解卷积神经网络的结构和特征提取能力。

总结

感受野是卷积神经网络中衡量每个神经元能够“看到”的输入图像区域的一个重要概念。理解和计算感受野有助于设计更有效的神经网络结构,提高特征提取的能力和模型的整体性能。

这篇关于深度学习常见概念解释(二)—— 感受野:定义与计算公式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1032587

相关文章

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

java常见报错及解决方案总结

《java常见报错及解决方案总结》:本文主要介绍Java编程中常见错误类型及示例,包括语法错误、空指针异常、数组下标越界、类型转换异常、文件未找到异常、除以零异常、非法线程操作异常、方法未定义异常... 目录1. 语法错误 (Syntax Errors)示例 1:解决方案:2. 空指针异常 (NullPoi

C++常见容器获取头元素的方法大全

《C++常见容器获取头元素的方法大全》在C++编程中,容器是存储和管理数据集合的重要工具,不同的容器提供了不同的接口来访问和操作其中的元素,获取容器的头元素(即第一个元素)是常见的操作之一,本文将详细... 目录一、std::vector二、std::list三、std::deque四、std::forwa

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

MySQL常见的存储引擎和区别说明

《MySQL常见的存储引擎和区别说明》MySQL支持多种存储引擎,如InnoDB、MyISAM、MEMORY、Archive、CSV和Blackhole,每种引擎有其特点和适用场景,选择存储引擎时需根... 目录mysql常见的存储引擎和区别说明1. InnoDB2. MyISAM3. MEMORY4. A

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR