深度学习常见概念解释(二)—— 感受野:定义与计算公式

2024-06-05 08:36

本文主要是介绍深度学习常见概念解释(二)—— 感受野:定义与计算公式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

笔者在学习深度网络的过程中,发现感受野(Receptive Field)这个概念经常出现,且该概念在深度网络特征提取层的设计中至关重要,但其作用不易通过名字直接理解。因此,本文收集了相关信息,对感受野进行定义和解释,并通过公式和实例帮助读者更好地理解这一概念。

感受野的定义

感受野(Receptive Field)是神经网络中一个基本且重要的概念,尤其是在卷积神经网络(CNNs)中。它表示输入空间中一个像素影响输出空间中特定神经元的区域大小。具体解释为:在卷积神经网络中,感受野是指在输入图像上,一个神经元(或特征图中的一个元素)可以看到或响应的区域大小。更具体地说,感受野是指输入图像的一个区域,这个区域中的像素会影响到卷积层或池化层中特定位置的输出值。

感受野的重要性

  1. 特征提取能力:感受野越大,神经元可以看到的输入区域就越大,能够捕捉到更多的全局特征。
  2. 卷积层设计:了解感受野的大小有助于设计合适的卷积层、池化层和步幅,以确保网络能够有效地捕捉到输入图像的关键信息。
  3. 网络深度与宽度:感受野的大小与网络的深度和每层的卷积核大小相关,影响网络的整体结构设计。

感受野的计算

计算公式

一般情况下,对于任意层的感受野大小,可以使用以下公式递归计算:

R n = R n − 1 + ( k n − 1 ) ⋅ s n − 1 R_n = R_{n-1} + (k_n - 1) \cdot s_{n-1} Rn=Rn1+(kn1)sn1

其中:

  • R n R_n Rn 是第 n 层的感受野大小。
  • R n − 1 R_{n-1} Rn1 是第 n-1 层的感受野大小。
  • k n k_n kn 是第 n 层的卷积核大小。
  • s n − 1 s_{n-1} sn1 是第 n-1 层的步幅大小。

通过公式可知:感受野的计算取决于卷积层和池化层的排列方式、卷积核大小、步幅和填充方式。以下是一个简单的例子来说明如何计算感受野。

示例

假设一个简单的卷积神经网络有三层卷积,每层的卷积核大小为 3 × 3 3 \times 3 3×3,步幅为1,填充为1(即保持输出尺寸不变)。

  1. 第一层卷积

    • 输入尺寸: 32 × 32 32 \times 32 32×32
    • 卷积核大小: 3 × 3 3 \times 3 3×3
    • 填充:1
    • 输出尺寸: 32 × 32 32 \times 32 32×32(由于填充为1)

    感受野大小: 3 × 3 3 \times 3 3×3

  2. 第二层卷积

    • 输入尺寸: 32 × 32 32 \times 32 32×32
    • 卷积核大小: 3 × 3 3 \times 3 3×3
    • 填充:1
    • 输出尺寸: 32 × 32 32 \times 32 32×32(由于填充为1)

    感受野大小: 3 + ( 3 − 1 ) = 5 × 5 3 + (3 - 1) = 5 \times 5 3+(31)=5×5

  3. 第三层卷积

    • 输入尺寸: 32 × 32 32 \times 32 32×32
    • 卷积核大小: 3 × 3 3 \times 3 3×3
    • 填充:1
    • 输出尺寸: 32 × 32 32 \times 32 32×32(由于填充为1)

    感受野大小: 5 + ( 3 − 1 ) = 7 × 7 5 + (3 - 1) = 7 \times 7 5+(31)=7×7

总的来说,通过每层卷积核的计算,最终第三层的感受野为 7 × 7 7 \times 7 7×7,即输入图像中一个 7 × 7 7 \times 7 7×7 的区域会影响到第三层特征图中的一个神经元的输出。

通过这种递归计算方式,可以逐层计算网络中每个神经元的感受野,帮助设计和理解卷积神经网络的结构和特征提取能力。

总结

感受野是卷积神经网络中衡量每个神经元能够“看到”的输入图像区域的一个重要概念。理解和计算感受野有助于设计更有效的神经网络结构,提高特征提取的能力和模型的整体性能。

这篇关于深度学习常见概念解释(二)—— 感受野:定义与计算公式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1032587

相关文章

SQL中redo log 刷⼊磁盘的常见方法

《SQL中redolog刷⼊磁盘的常见方法》本文主要介绍了SQL中redolog刷⼊磁盘的常见方法,将redolog刷入磁盘的方法确保了数据的持久性和一致性,下面就来具体介绍一下,感兴趣的可以了解... 目录Redo Log 刷入磁盘的方法Redo Log 刷入磁盘的过程代码示例(伪代码)在数据库系统中,r

C 语言中enum枚举的定义和使用小结

《C语言中enum枚举的定义和使用小结》在C语言里,enum(枚举)是一种用户自定义的数据类型,它能够让你创建一组具名的整数常量,下面我会从定义、使用、特性等方面详细介绍enum,感兴趣的朋友一起看... 目录1、引言2、基本定义3、定义枚举变量4、自定义枚举常量的值5、枚举与switch语句结合使用6、枚

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

SQL BETWEEN 的常见用法小结

《SQLBETWEEN的常见用法小结》BETWEEN操作符是SQL中非常有用的工具,它允许你快速选取某个范围内的值,本文给大家介绍SQLBETWEEN的常见用法,感兴趣的朋友一起看看吧... 在SQL中,BETWEEN是一个操作符,用于选取介于两个值之间的数据。它包含这两个边界值。BETWEEN操作符常用

python中各种常见文件的读写操作与类型转换详细指南

《python中各种常见文件的读写操作与类型转换详细指南》这篇文章主要为大家详细介绍了python中各种常见文件(txt,xls,csv,sql,二进制文件)的读写操作与类型转换,感兴趣的小伙伴可以跟... 目录1.文件txt读写标准用法1.1写入文件1.2读取文件2. 二进制文件读取3. 大文件读取3.1

C++中初始化二维数组的几种常见方法

《C++中初始化二维数组的几种常见方法》本文详细介绍了在C++中初始化二维数组的不同方式,包括静态初始化、循环、全部为零、部分初始化、std::array和std::vector,以及std::vec... 目录1. 静态初始化2. 使用循环初始化3. 全部初始化为零4. 部分初始化5. 使用 std::a

前端下载文件时如何后端返回的文件流一些常见方法

《前端下载文件时如何后端返回的文件流一些常见方法》:本文主要介绍前端下载文件时如何后端返回的文件流一些常见方法,包括使用Blob和URL.createObjectURL创建下载链接,以及处理带有C... 目录1. 使用 Blob 和 URL.createObjectURL 创建下载链接例子:使用 Blob

C++ vector的常见用法超详细讲解

《C++vector的常见用法超详细讲解》:本文主要介绍C++vector的常见用法,包括C++中vector容器的定义、初始化方法、访问元素、常用函数及其时间复杂度,通过代码介绍的非常详细,... 目录1、vector的定义2、vector常用初始化方法1、使编程用花括号直接赋值2、使用圆括号赋值3、ve

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

Pytest多环境切换的常见方法介绍

《Pytest多环境切换的常见方法介绍》Pytest作为自动化测试的主力框架,如何实现本地、测试、预发、生产环境的灵活切换,本文总结了通过pytest框架实现自由环境切换的几种方法,大家可以根据需要进... 目录1.pytest-base-url2.hooks函数3.yml和fixture结论你是否也遇到过