【官方文档解读】torch.jit.script 的使用,并附上官方文档中的示例代码

2024-06-05 06:12

本文主要是介绍【官方文档解读】torch.jit.script 的使用,并附上官方文档中的示例代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


由 OpenMMLab 的部署教程 所述,对于模型中存在有控制条件的(如 if,for 等),需要用 torch.jit.script 而非采样默认的 torch.jit.trace 方法。本文则详细介绍了下官方文档中对 torch.jit.script 的解释和示例代码。

torch.jit.script

torch.jit.script 用于将函数或 nn.Module 编译为 TorchScript。

函数签名
torch.jit.script(obj, optimize=None, _frames_up=0, _rcb=None, example_inputs=None)
功能概述

将函数或 nn.Module 脚本化,会检查源代码,并使用 TorchScript 编译器将其编译为 TorchScript 代码,并返回一个 ScriptModuleScriptFunction。TorchScript 是 Python 语言的一个子集,因此并不是所有的 Python 功能都能在其中使用,但我们提供了足够的功能来对张量进行计算和执行控制相关操作。完整指南请参阅 TorchScript 语言参考。

脚本化字典或列表会将其中的数据复制到一个 TorchScript 实例中,该实例可以在 Python 和 TorchScript 之间以零复制开销传递引用。

torch.jit.script 可以作为函数用于模块、函数、字典和列表,并可以作为装饰器 @torch.jit.script 用于 TorchScript 类和函数。

参数
  • obj(Callable、类或 nn.Module) – 要编译的 nn.Module、函数、类类型、字典或列表。
  • example_inputs(Union[List[Tuple], Dict[Callable, List[Tuple]], None]) – 提供示例输入以注释函数或 nn.Module 的参数。
返回值

如果 obj 是 nn.Module,脚本会返回一个 ScriptModule 对象。返回的 ScriptModule 将具有与原始 nn.Module 相同的子模块和参数集。如果 obj 是独立函数,将返回 ScriptFunction。如果 obj 是字典,则脚本返回 torch._C.ScriptDict 实例。如果 obj 是列表,则脚本返回 torch._C.ScriptList 实例。

脚本化函数

@torch.jit.script 装饰器通过编译函数体来构建 ScriptFunction。

示例(脚本化函数):
import torch@torch.jit.script
def foo(x, y):if x.max() > y.max():r = xelse:r = yreturn rprint(type(foo))  # torch.jit.ScriptFunction# 以 Python 代码查看编译后的图
print(foo.code)# 使用 TorchScript 解释器调用函数
foo(torch.ones(2, 2), torch.ones(2, 2))
使用示例输入脚本化函数

示例输入可用于注释函数参数。

示例(脚本化前注释函数):
import torchdef test_sum(a, b):return a + b# 注释参数为 int
scripted_fn = torch.jit.script(test_sum, example_inputs=[(3, 4)])print(type(scripted_fn))  # torch.jit.ScriptFunction# 以 Python 代码查看编译后的图
print(scripted_fn.code)# 使用 TorchScript 解释器调用函数
scripted_fn(20, 100)
脚本化 nn.Module

默认情况下,脚本化 nn.Module 会编译 forward 方法,并递归编译 forward 调用的任何方法、子模块和函数。如果 nn.Module 仅使用 TorchScript 支持的功能,则无需对原始模块代码进行任何更改。脚本将构建一个 ScriptModule,其中包含原始模块的属性、副本和方法。

示例(脚本化包含参数的简单模块):
import torchclass MyModule(torch.nn.Module):def __init__(self, N, M):super().__init__()# 此参数将被复制到新的 ScriptModuleself.weight = torch.nn.Parameter(torch.rand(N, M))# 当使用此子模块时,它将被编译self.linear = torch.nn.Linear(N, M)def forward(self, input):output = self.weight.mv(input)# 这会调用 `nn.Linear` 模块的 `forward` 方法,从而在此处将 `self.linear` 子模块编译为 `ScriptModule`output = self.linear(output)return outputscripted_module = torch.jit.script(MyModule(2, 3))
示例(脚本化包含 traced 子模块的模块):
import torch
import torch.nn as nn
import torch.nn.functional as Fclass MyModule(nn.Module):def __init__(self):super().__init__()# torch.jit.trace 生成一个 ScriptModule 的 conv1 和 conv2self.conv1 = torch.jit.trace(nn.Conv2d(1, 20, 5), torch.rand(1, 1, 16, 16))self.conv2 = torch.jit.trace(nn.Conv2d(20, 20, 5), torch.rand(1, 20, 16, 16))def forward(self, input):input = F.relu(self.conv1(input))input = F.relu(self.conv2(input))return inputscripted_module = torch.jit.script(MyModule())

要编译 forward 以外的方法(并递归编译它调用的任何内容),请将 @torch.jit.export 装饰器添加到方法上。要选择不编译,请使用 @torch.jit.ignore@torch.jit.unused

示例(模块中导出和忽略的方法):
import torch
import torch.nn as nnclass MyModule(nn.Module):def __init__(self):super().__init__()@torch.jit.exportdef some_entry_point(self, input):return input + 10@torch.jit.ignoredef python_only_fn(self, input):# 此函数不会被编译,因此可以使用任何 Python APIimport pdbpdb.set_trace()def forward(self, input):if self.training:self.python_only_fn(input)return input * 99scripted_module = torch.jit.script(MyModule())
print(scripted_module.some_entry_point(torch.randn(2, 2)))
print(scripted_module(torch.randn(2, 2)))
示例(使用示例输入注释 nn.Module 的 forward 方法):
import torch
import torch.nn as nn
from typing import NamedTupleclass MyModule(NamedTuple):result: List[int]class TestNNModule(torch.nn.Module):def forward(self, a) -> MyModule:result = MyModule(result=a)return resultpdt_model = TestNNModule()# 在提供的输入下运行 pdt_model 并注释 forward 的参数
scripted_model = torch.jit.script(pdt_model, example_inputs={pdt_model: [([10, 20, ], ), ], })# 使用实际输入运行 scripted_model
print(scripted_model([20]))

官方文档链接:https://pytorch.org/docs/stable/generated/torch.jit.script.html#torch.jit.script

这篇关于【官方文档解读】torch.jit.script 的使用,并附上官方文档中的示例代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1032278

相关文章

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

git使用的说明总结

Git使用说明 下载安装(下载地址) macOS: Git - Downloading macOS Windows: Git - Downloading Windows Linux/Unix: Git (git-scm.com) 创建新仓库 本地创建新仓库:创建新文件夹,进入文件夹目录,执行指令 git init ,用以创建新的git 克隆仓库 执行指令用以创建一个本地仓库的