Codeforces 385C Bear and Prime Numbers(数论)

2024-06-05 04:18

本文主要是介绍Codeforces 385C Bear and Prime Numbers(数论),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目链接:Codeforces 385C Bear and Prime Numbers


题目大意:给出一个长度为n的序列,然后有m次询问,每次询问给出a, b,然后计算[a,b]中所有素数的F(x)之和,F(x)为计算序列中有几个数为x的倍数。


解题思路:数论题,因为内存空间限制为512M,所以可以开的下10^7的数组,然后用筛选法求素数的同时计算个数。


#include <stdio.h>
#include <string.h>const int N = 10000005;int n, m, v[N], g[N], s[N];void init() {memset(v, 0, sizeof(v));memset(g, 0, sizeof(g));memset(s, 0, sizeof(s));int a;scanf("%d", &n);for (int i = 0; i < n; i++) {scanf("%d", &a);g[a]++;}for (int i = 2; i < N; i++) {if (v[i]) continue;for (int j = i; j < N; j += i) {if (g[j]) s[i] += g[j];v[j] = 1;}}for (int i = 1; i < N; i++) s[i] += s[i-1];
}void solve() {int a, b;scanf("%d", &m);for (int i = 0; i < m; i++) {scanf("%d%d", &a, &b);if (a >= N) a = N;if (b >= N) b = N - 1;printf("%d\n", s[b] - s[a-1]);}
}int main() {init();solve();return 0;
}


这篇关于Codeforces 385C Bear and Prime Numbers(数论)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1032051

相关文章

usaco 1.3 Prime Cryptarithm(简单哈希表暴搜剪枝)

思路: 1. 用一个 hash[ ] 数组存放输入的数字,令 hash[ tmp ]=1 。 2. 一个自定义函数 check( ) ,检查各位是否为输入的数字。 3. 暴搜。第一行数从 100到999,第二行数从 10到99。 4. 剪枝。 代码: /*ID: who jayLANG: C++TASK: crypt1*/#include<stdio.h>bool h

数论入门整理(updating)

一、gcd lcm 基础中的基础,一般用来处理计算第一步什么的,分数化简之类。 LL gcd(LL a, LL b) { return b ? gcd(b, a % b) : a; } <pre name="code" class="cpp">LL lcm(LL a, LL b){LL c = gcd(a, b);return a / c * b;} 例题:

数论ZOJ 2562

题意:给定一个数N,求小于等于N的所有数当中,约数最多的一个数,如果存在多个这样的数,输出其中最大的一个。 分析:反素数定义:对于任何正整数x,其约数的个数记做g(x).例如g(1)=1,g(6)=4.如果某个正整数x满足:对于任意i(0<i<x),都有g(i)<g(x),则称x为反素数。 性质一:一个反素数的质因子必然是从2开始连续的质数。 性质二:p=2^t1*3^t2*5^t3*7

Codeforces Round #240 (Div. 2) E分治算法探究1

Codeforces Round #240 (Div. 2) E  http://codeforces.com/contest/415/problem/E 2^n个数,每次操作将其分成2^q份,对于每一份内部的数进行翻转(逆序),每次操作完后输出操作后新序列的逆序对数。 图一:  划分子问题。 图二: 分而治之,=>  合并 。 图三: 回溯:

Codeforces Round #261 (Div. 2)小记

A  XX注意最后输出满足条件,我也不知道为什么写的这么长。 #define X first#define Y secondvector<pair<int , int> > a ;int can(pair<int , int> c){return -1000 <= c.X && c.X <= 1000&& -1000 <= c.Y && c.Y <= 1000 ;}int m

Codeforces Beta Round #47 C凸包 (最终写法)

题意慢慢看。 typedef long long LL ;int cmp(double x){if(fabs(x) < 1e-8) return 0 ;return x > 0 ? 1 : -1 ;}struct point{double x , y ;point(){}point(double _x , double _y):x(_x) , y(_y){}point op

Codeforces Round #113 (Div. 2) B 判断多边形是否在凸包内

题目点击打开链接 凸多边形A, 多边形B, 判断B是否严格在A内。  注意AB有重点 。  将A,B上的点合在一起求凸包,如果凸包上的点是B的某个点,则B肯定不在A内。 或者说B上的某点在凸包的边上则也说明B不严格在A里面。 这个处理有个巧妙的方法,只需在求凸包的时候, <=  改成< 也就是说凸包一条边上的所有点都重复点都记录在凸包里面了。 另外不能去重点。 int

Codeforces 482B 线段树

求是否存在这样的n个数; m次操作,每次操作就是三个数 l ,r,val          a[l] & a[l+1] &......&a[r] = val 就是区间l---r上的与的值为val 。 也就是意味着区间[L , R] 每个数要执行 | val 操作  最后判断  a[l] & a[l+1] &......&a[r] 是否= val import ja

POJ2247数论

p = 2^a*3^b*5^c*7^d 求形如上式的第n小的数。 import java.io.BufferedReader;import java.io.InputStream;import java.io.InputStreamReader;import java.io.PrintWriter;import java.math.BigInteger;import java.u

计蒜客 Half-consecutive Numbers 暴力打表找规律

The numbers 11, 33, 66, 1010, 1515, 2121, 2828, 3636, 4545 and t_i=\frac{1}{2}i(i+1)t​i​​=​2​​1​​i(i+1), are called half-consecutive. For given NN, find the smallest rr which is no smaller than NN