本文主要是介绍uva 11651 - Krypton Number System(矩阵快速幂),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
题目链接:uva 11651 - Krypton Number System
题目大意:给定进制base,和分数score,求在base进制下,有多少个数的值为score,要求不能有连续相同的数字以及前导0.计算一个数的值即为相邻两位数的差平方的和。
解题思路:因为score很大,所以直接dp肯定超时,但是即使对于base=6的情况,每次新添一个数score最大增加25(0-5),所以用dp[i][j]预处理出base平方以内的总数,然后用矩阵快速幂计算。
#include <cstdio>
#include <cstring>
#include <algorithm>using namespace std;
typedef unsigned long long ll;
const int maxn = 155;
const ll MOD = 1ll<<32;struct Mat {int r, c;ll arr[maxn][maxn];Mat (int r = 0, int c = 0) { set(r, c); }void set(int r, int c) {this->r = r;this->c = c;memset(arr, 0, sizeof(arr));}Mat operator * (const Mat& u) {Mat ret(r, u.c);for (int k = 0; k < c; k++) {for (int i = 0; i < r; i++) {if (arr[i][k] == 0)continue;for (int j = 0; j < u.c; j++)ret.arr[i][j] = (ret.arr[i][j] + arr[i][k] * u.arr[k][j]) % MOD;}}return ret;}
};int base, N;
ll dp[maxn][maxn], score;void init () {scanf("%d%llu", &base, &score);N = (base-1) * (base-1);memset(dp, 0, sizeof(dp));for (int i = 0; i <= N; i++)dp[0][i] = 1;for (int i = 0; i < N; i++) {for (int j = 0; j < base; j++) {for (int k = 0; k < base; k++) {int f = (j - k) * (j - k);if (i + f > N || f == 0)continue;dp[i+f][j] = (dp[i+f][j] + dp[i][k]) % MOD;}}}
}Mat change () {Mat ret(N*base, 1);for (int i = 1; i <= N; i++)for (int j = 0; j < base; j++)ret.arr[(i-1)*base+j][0] = dp[i][j];return ret;
}Mat build () {int n = N * base;Mat x(n, n);for (int i = base; i < n; i++)x.arr[i-base][i] = 1;for (int i = 0; i < base; i++) {for (int j = 0; j < base; j++) {if (i == j)continue;int k = N - (i-j) * (i-j);x.arr[(N-1)*base+i][k*base+j] = 1;}}return x;
}Mat pow_mat (Mat ret, int n) {Mat x = build();while (n) {if (n&1)ret = x * ret;x = x * x;n >>= 1;}return ret;
}ll solve () {ll ans = 0;if (score <= N) {for (int i = 1; i < base; i++)ans = (ans + dp[score][i]) % MOD;return ans;}Mat ret = change();ret = pow_mat(ret, score-N);for (int i = 1; i < base; i++)ans = (ans + ret.arr[(N-1)*base+i][0]) % MOD;return ans;
}int main () {int cas;scanf("%d", &cas);for (int kcas = 1; kcas <= cas; kcas++) {init();printf("Case %d: %llu\n", kcas, solve());}return 0;
}
这篇关于uva 11651 - Krypton Number System(矩阵快速幂)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!