再学python3(四):python-装饰器、迭代器、生成器

2024-06-04 19:38

本文主要是介绍再学python3(四):python-装饰器、迭代器、生成器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、装饰器  详见这里

1.1 什么是装饰器?

装饰器本质上就是一个python函数,他可以让其他函数在不需要做任何代码变动的前提下,增加额外的功能,装饰器的返回值也是一个函数对象。

装饰器的应用场景:比如插入日志,性能测试,事务处理,缓存等等场景。

1.2 装饰器的形成过程。

现在我有一个需求,我想让你测试这个函数的执行时间,在不改变这个函数代码的情况下

import timedef func1():print('in func1')def timer(func):def inner():start = time.time()func()print(time.time() - start)return innerfunc1 = timer(func1)
func1()

 

但是如果有多个函数,我都想让你测试他们的执行时间,你每次是不是都得func1 = timer(func1)?这样还是有点麻烦,因为这些函数的函数名可能是不相同,有func1,func2,graph,等等,所以更简单的方法,python给你提供了,那就是语法糖。

 

 

import time
def timer(func):def inner():start = time.time()func()print(time.time() - start)return inner@timer   #==> func1 = timer(func1)
def func1():print('in func1')func1()

 

 刚刚我们讨论的装饰器都是装饰不带参数的函数,现在要装饰一个带参数的函数怎么办呢?

 装饰器---带参数的装饰器

 

 

import time
def timer(func):def inner(*args,**kwargs):start = time.time()re = func(*args,**kwargs)print(time.time() - start)return rereturn inner@timer   #==> func1 = timer(func1)
def func1(a,b):print('in func1')@timer   #==> func2 = timer(func2)
def func2(a):print('in func2 and get a:%s'%(a))return 'fun2 over'func1('aaaaaa','bbbbbb')
print(func2('aaaaaa'))

 

上面的装饰器已经非常完美了,但是有我们正常情况下查看函数信息的方法在此处都会失效:

 

def index():'''这是一个主页信息'''print('from index')print(index.__doc__)    #查看函数注释的方法
print(index.__name__)   #查看函数名的方法

 

如何解决呢?

 

from functools import wrapsdef deco(func):@wraps(func) #加在最内层函数正上方def wrapper(*args,**kwargs):return func(*args,**kwargs)return wrapper@deco
def index():'''哈哈哈哈'''print('from index')print(index.__doc__)
print(index.__name__)

 

1.3 开放封闭原则。

1.对扩展是开放的

    为什么要对扩展开放呢?

    我们说,任何一个程序,不可能在设计之初就已经想好了所有的功能并且未来不做任何更新和修改。所以我们必须允许代码扩展、添加新功能。

  2.对修改是封闭的

    为什么要对修改封闭呢?

    就像我们刚刚提到的,因为我们写的一个函数,很有可能已经交付给其他人使用了,如果这个时候我们对其进行了修改,很有可能影响其他已经在使用该函数的用户。

装饰器完美的遵循了这个开放封闭原则。

1.4 装饰器的主要功能和固定结构。

 

 

def timer(func):def inner(*args,**kwargs):'''执行函数之前要做的'''re = func(*args,**kwargs)'''执行函数之后要做的'''return rereturn inner

 

 

 

from functools import wrapsdef deco(func):@wraps(func) #加在最内层函数正上方def wrapper(*args,**kwargs):return func(*args,**kwargs)return wrapper

 

1.5 带参数的装饰器。

假如你有成千上万个函数使用了一个装饰器,现在你想把这些装饰器都取消掉,你要怎么做?

一个一个的取消掉? 没日没夜忙活3天。。。

过两天你领导想通了,再让你加上。。。

 

 

def outer(flag):def timer(func):def inner(*args,**kwargs):if flag:print('''执行函数之前要做的''')re = func(*args,**kwargs)if flag:print('''执行函数之后要做的''')return rereturn innerreturn timer@outer(False)
def func():print(111)func()

 

1.6 多个装饰器装饰一个函数。

def wrapper1(func):def inner():print('wrapper1 ,before func')func()print('wrapper1 ,after func')return innerdef wrapper2(func):def inner():print('wrapper2 ,before func')func()print('wrapper2 ,after func')return inner@wrapper2
@wrapper1
def f():print('in f')f()

 

二、迭代器

# 迭代器
'''
可被for循环的数据类型
list
dic
str
set
tuple
f = open()
range
enumerate 枚举'''# 可用dir()函数打印出数据类型的可用函数
print(dir({})) # ['__class__', '__contains__',  …… , 'clear', 'copy', 'fromkeys', 'update', 'values']# 双下划线方法
print([1].__add__([2]))
print([1]+[2])'''
迭代器:
Iterable 可迭代的  ---> __iter__ 只要含有__iter__方法都是可迭代的
[].__iter__()迭代器 --> __next__ 可从迭代器中一个一个的取值可迭代协议:只要含有__iter__方法都是可迭代的
迭代器协议:内部含有__iter__和 __next__的方法就是迭代器
可for循环的都是可迭代的
可迭代的.__iter__()方法就可以得到一个迭代器迭代器的好处
1. 可以一个一个取值
2.节省内存空间
'''

 

三、生成器

 

# 生成器函数'''
1.含有yield的函数就是生成器函数
2.yield不能与return共存
3.yield只能用在函数中
'''# def generator():
#     print('1')
#     yield 'aaaaa'
#     print('2')
#     yield 'bbbb'# g = generator()
#g()  # 输出为错误 与return 不同,yield是返回的一个迭代器,不能直接调用#g.__next__()   # 输出为1
#g.__next__()   # 输出为2# print(g.__next__())   # 输出为1
# print(g.__next__())   # 输出为2# 可用for循环
# for i in g:
#      print(i)# 文件监听输入   如果输入的一行字符串中包含hhh  着输出此行内容
def tail(filename):f = open(filename, encoding='utf-8')while True:line = f.readline()if line.strip():  # 去回车yield line.strip()g = tail('1.txt')
for i in g:if 'hhh' in i:print('11111', i)

生成器例题等

# 列表推导式和生成器表达式
'''
区别
1.有无括号
2.返回值不一样
3.生成器表达式几乎不占内存
'''
# list1 = ['hhh%s'%i for i in range(10)]  # 列表推导式  ['hhh0', 'hhh1',…, 'hhh9']
# print(list1)
#
# g = ('hhh%s' % i for i in range(10))
# for i in g:
#     print(i)  # 生成器表达式  hhh0 … hhh9# 推导式进阶
'''
[每个元素或元素的相关操作 for 元素 in 可迭代数据类型]    遍历处理
[每个元素或元素的相关操作 for 元素 in 可迭代数据类型 if 元素相关条件 ]    遍历处理'''# list2 = [i for i in range(31) if i % 3 == 0]
# print('31以内可被3整除的数%s' % list2)  # 31以内可被3整除的数[0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30]#生成器只能取一次,再取就为空# 例1
def fun1():for i in range(4):yield ig = fun1()
g1 = (i for i in g)
g2 = (i for i in g1)'''
#case1
print(list(g1))  # [0, 1, 2, 3]
print(list(g2))  #g1已经取过了,g2要再从g1取 所以为  []
''''''
#case2
print(list(g1))  # [0, 1, 2, 3]
print(list(g1))  #g1已经取过了所以为 []
print(list(g2))  # []
''''''
#case3
print(list(g))  # [0, 1, 2, 3]
print(list(g1))  #g 已经取过了,g1要再从g取 所以为 []
print(list(g2))  # []
'''# 例2def fun1(n,i):return n+idef fun2():for i in range(4):yield ig = fun2()
for n in [1, 10]:g = (fun1(n, i) for i in g)print(list(g))  # [20, 21, 22, 23]'''
for n in [1, 10]:g = (fun1(n, i) for i in g)
可替换为
n = 1g = (fun1(n, i) for i in g) 但是此时g不执行n = 10
g = (fun1(n, i) for i in g)当list(g)时,会执行
n = 10
g = (fun1(n, i) for i in g) 寻找g
从
n = 1
g = (fun1(n, i) for i in g)取g
此时g从生成器取(0 1 2 3)
则
n = 10
g = (fun1(n, i) for i in g) 可化为
g = (fun1(n, i) for i in (fun1(n, i) for i in g)) 化为
g = (fun1(n, i) for i in (fun1(n, i) for i in (0 1 2 3)))
即:
g = (fun1(10, i) for i in (fun1(10, i) for i in (0 1 2 3)))
即:[20, 21, 22, 23]意思就是当list的时候才从下到上寻找g  执行上面的代码,不list的时候 不做操作
'''

 

这篇关于再学python3(四):python-装饰器、迭代器、生成器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1030933

相关文章

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Python进阶之Excel基本操作介绍

《Python进阶之Excel基本操作介绍》在现实中,很多工作都需要与数据打交道,Excel作为常用的数据处理工具,一直备受人们的青睐,本文主要为大家介绍了一些Python中Excel的基本操作,希望... 目录概述写入使用 xlwt使用 XlsxWriter读取修改概述在现实中,很多工作都需要与数据打交

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

基于Python开发电脑定时关机工具

《基于Python开发电脑定时关机工具》这篇文章主要为大家详细介绍了如何基于Python开发一个电脑定时关机工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 简介2. 运行效果3. 相关源码1. 简介这个程序就像一个“忠实的管家”,帮你按时关掉电脑,而且全程不需要你多做

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand