【第二节】C/C++数据结构之线性表

2024-06-04 12:44

本文主要是介绍【第二节】C/C++数据结构之线性表,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、线性表基本说明

1.1 基本概念

1.2 抽象数据类型

1.3 存储结构

1.4 插入与删除的区别

1.5 顺序存储和链式存储的优缺点

二、链表

2.1 基本概念

2.2 抽象数据类型

2.3 单链表的定义

2.4 单链表的基本操作

2.5 单链表模板形式的类定义与实现

三、单向循环链表

四、双链表、双向循环链表


一、线性表基本说明

1.1 基本概念

        线性表,零个或多个数据元素的有限序列称为线性表,例如一个字符串就是一个线性表比如一个结构体数组也是一个线性表。

1.2 抽象数据类型

ADT 线性表(List)
Data
除第一个元素外,每一个元素有且只有一个直接前驱元素,除了最后一个元素外,每个元素有且只有一个直接后继元素,数据元素之间的关系是一对一的关系
Operation
初始化操作,建立一个空的线性表
若线性表为空,返回true,否则返回false
将线性表清空
将线性表中的第i个位置元素值返回给e在线性表中查找与给定值e相等的元素,成功返回序号,否则返回0在线性表中的第i个位置中插入新元素
在线性表中删除第i个位置的元素,并用e返回其值
返回线性表L的元素个数
endADT

1.3 存储结构

线性表的顺序存储

        线性表的顺序存储结构,是指使用一段地址连续的存储单元依次存储线性表的数据元素。这种存储方式通常通过数组(Array)来实现,其中数组的每个元素都对应线性表中的一个数据元素。

        在数组中,数据元素按照其在线性表中的逻辑顺序存储,即第一个数据元素存储在数组的第一个位置,第二个数据元素存储在第二个位置,依此类推。这种存储方式使得我们可以通过数组的索引直接访问线性表中的任何数据元素,而不需要遍历整个线性表。

        需要注意的是,数组的总长度(即数据空间的总长度)并不一定等于线性表的长度。线性表的长度是指线性表中实际存储的数据元素个数,而数组的长度是数组中可以存储的最大数据元素个数。因此,数组的长度通常大于线性表的长度,以便在需要时可以动态扩展。

        在实际编程中,我们通常会使用动态数组(Dynamic Array)来实现线性表的顺序存储结构,以便在需要时可以动态调整数组的大小。例如,当线性表的长度超过数组的长度时,可以创建一个新的更大的数组,并将原数组中的数据元素复制到新数组中。

线性表的链式存储

        线性表的链式存储结构,是指使用链表(Linked List)来存储线性表的数据元素。在链式存储结构中,每个数据元素都包含一个数据项和一个指向下一个数据元素的指针。这种存储方式可以灵活地进行插入和删除操作,而不需要移动大量的数据。

        链式存储结构的优点在于,当需要插入或删除元素时,只需要修改相关节点的指针,而不需要移动大量的数据。因此,链式存储结构在执行插入和删除操作时,通常比顺序存储结构更高效。

        然而,链式存储结构也有其缺点。由于每个数据元素都包含一个指针,因此存储空间的利用率不如顺序存储结构高。此外,链式存储结构在执行查找操作时,需要从头开始遍历链表,直到找到目标元素或到达链表的末尾。因此,如果需要频繁地执行查找操作,顺序存储结构可能更适合。

        总的来说,选择使用顺序存储结构还是链式存储结构,取决于具体的应用场景。如果需要频繁地执行插入和删除操作,并且数据量不大,那么链式存储结构可能更适合。如果需要频繁地执行查找操作,并且数据量较大,那么顺序存储结构可能更适合。

1.4 插入与删除的区别

顺序线性表的插入与删除:
在顺序存储结构下,线性表在插入新数据前需要将其插入点后面的数据依次后移一个单位,以空出位置让新数据插入
在顺序存储结构下,线性表在删除数据后需要将其删除点后面的数据依次前移一个单位,以补足删除后空出位置

链式线性表的插入与删除:
当我们想在链表中插入一个新数据的时候,只需要申请一段内存空间,然后将其前一个元素的指针指向自己,再将自己的指针指向下一个元素即可,无需操作其他元素
当我们想在链表中删除一个节点时,只需要将前一个节点指向后一个节点,并释放掉自己即可

1.5 顺序存储和链式存储的优缺点

顺序存储和链式存储是两种基本的数据结构,它们在存储和访问数据元素时各有优缺点。

顺序存储(顺序结构)

  • 优点:顺序存储的优点在于存储效率高,存取速度快。由于数据元素存储在连续的内存空间中,因此可以通过下标直接访问任何元素,无需遍历整个数据结构。

  • 缺点:顺序存储的缺点在于空间大小固定,不易扩充。一旦定义了存储空间的大小,就无法改变。此外,在插入或删除元素时,需要移动大量元素,这会降低效率。

链式存储(链式结构)

  • 优点:链式存储的优点在于空间利用率高,可以动态分配和释放存储空间。此外,在插入和删除元素时,只需要修改链接指针,而不需要移动数据元素,因此效率较高。

  • 缺点:链式存储的缺点在于存取元素时需要顺序查找,因此存取效率不高。此外,由于每个元素都包含一个指针,因此存储空间的利用率不如顺序存储高。

在实际应用中,选择顺序存储还是链式存储取决于具体的应用需求。如果需要频繁地插入和删除元素,并且数据量不大,那么链式存储可能更适合。如果需要频繁地查找元素,并且数据量较大,那么顺序存储可能更适合。

二、链表

2.1 基本概念

        链表是一种物理存储单元上非连续、非顺序的存储结构,数据元素的逻辑顺序是通过链表中的指针链接次序实现的。链表由一系列结点(链表中每一个元素称为结点)组成,结点可以在运行时动态生成。
        每个结点包括两个部分:一个是存储数据元素的数据域,另一个是存储下一个结点地址
的指针域循环链表是另一种形式的链式存贮结构。它的特点是表中最后一个结点的指针域指向头结点,整个链表形成一个环。

2.2 抽象数据类型

ADT 链表(List)
Data
除第一个元素外,每一个元素有且只有一个直接前驱元素,除了最后一个元素外,每个元素有且只有一个直接后继元素,数据元素之间的关系是一对一的关系
Operation
初始化操作,建立一个空的链表
若链表为空,返回true,否则返回false
将链表清空
将链表中的第i个位置元素值返回给e
在链表中查找与给定值e相等的元素,成功返回序号,否则返回0
在链表中的第i个位置中插入新元素
在链表中删除第i个位置的元素,并用e返回其值
返回链表的元素个数
endADT

2.3 单链表的定义

        链表中最简单的一种是单向链表,它包含两个域,一个数据域和一个指针域。这个链接指向列表中的下一个节点,而最后一个节点则指向一个空值。
        单向链表通常由一个头指针(head),用于指向链表头。单向链表有一个尾结点,该结点的指针部分指向一个空结点(NULL)。

2.4 单链表的基本操作

对链表的基本操作有:
创建链表是指,从无到有地建立起一个链表,即往空链表中依次插入若干结点,并保持结点之间的前驱和后继关系。
检索操作是指,按给定的结点索引号或检索条件,查找某个结点。如果找到指定的结点则称为检索成功;否则,称为检索失败。
插入操作是指,在结点之间插入一个新的结点,使线性表的长度增1。
删除操作是指,删除结点ki,使线性表的长度减1
打印输出。

2.5 单链表模板形式的类定义与实现

代码示例:

#include <iostream>// 定义链表节点结构体
template <typename T>
struct Node {T data;Node* next;Node(const T& value) : data(value), next(nullptr) {}
};// 单链表类模板
template <typename T>
class SingleLinkedList {
private:Node<T>* head;int size;public:SingleLinkedList() : head(nullptr), size(0) {}~SingleLinkedList() {while (head != nullptr) {Node<T>* temp = head;head = head->next;delete temp;}}// 插入元素到链表头部void push_front(const T& value) {Node<T>* newNode = new Node<T>(value);newNode->next = head;head = newNode;size++;}// 删除链表头部元素void pop_front() {if (head != nullptr) {Node<T>* temp = head;head = head->next;delete temp;size--;}}// 查找元素Node<T>* find(const T& value) {Node<T>* current = head;while (current != nullptr) {if (current->data == value) {return current;}current = current->next;}return nullptr; // 未找到返回nullptr}// 删除指定元素void remove(const T& value) {if (head == nullptr) return;if (head->data == value) {pop_front();return;}Node<T>* current = head;while (current->next != nullptr) {if (current->next->data == value) {Node<T>* temp = current->next;current->next = current->next->next;delete temp;size--;return;}current = current->next;}}// 获取链表大小int getSize() const {return size;}// 显示链表元素void display() const {Node<T>* current = head;while (current != nullptr) {std::cout << current->data << " ";current = current->next;}std::cout << std::endl;}
};// 示例使用
int main() {SingleLinkedList<int> list;// 插入元素list.push_front(10);list.push_front(20);list.push_front(30);list.display(); // 输出: 30 20 10// 删除元素list.pop_front();list.display(); // 输出: 20 10// 查找元素Node<int>* foundNode = list.find(20);if (foundNode != nullptr) {std::cout << "Found: " << foundNode->data << std::endl;} else {std::cout << "Not found" << std::endl;}// 删除指定元素list.remove(10);list.display(); // 输出: 20// 获取链表大小std::cout << "Size: " << list.getSize() << std::endl; // 输出: Size: 1return 0;
}

        在这个代码中,我们定义了一个Node结构体模板来表示链表中的节点,每个节点包含一个数据项和一个指向下一个节点的指针。SingleLinkedList类模板定义了单链表的主要操作,包括构造函数、析构函数、push_front(在链表前端插入元素)、pop_front(从链表前端删除元素)、find(查找元素)、remove(删除指定元素)、getSize(获取链表大小)和display(显示链表中的所有元素)。

        在main函数中,我们创建了一个SingleLinkedList<int>对象,并进行了一些操作,以展示如何使用这个模板类。这些操作包括插入元素、删除元素、查找元素、显示链表和获取链表大小。

三、单向循环链表

四、双链表、双向循环链表

        单向链表、单向循环链表、双向链表和双向循环链表都是链表数据结构的不同类型,它们在结构和操作上有所不同。以下是这些链表类型之间的主要区别:

  1. 单向链表:

    • 每个节点包含一个数据项和一个指向下一个节点的指针。

    • 链表的末尾节点的指针通常设置为NULL,表示链表的结束。

    • 单向链表不是循环的,它只能从头到尾遍历。

  2. 单向循环链表:

    • 与单向链表类似,但链表的最后一个节点的指针指向链表的第一个节点,形成一个循环。

    • 这种类型的链表可以从任何节点开始遍历,并且可以无限期地继续。

  3. 双向链表:

    • 每个节点包含一个数据项、一个指向下一个节点的指针和一个指向前一个节点的指针。

    • 链表的第一个节点的前向指针通常设置为NULL,表示链表的开始。

    • 链表的最后一个节点的后向指针通常设置为NULL,表示链表的结束。

    • 双向链表可以从任意节点开始向前或向后遍历。

  4. 双向循环链表:

    • 与双向链表类似,但链表的第一个节点的后向指针指向链表的最后一个节点,形成一个循环。

    • 链表的最后一个节点的前向指针指向链表的第一个节点,形成另一个循环。

    • 双向循环链表可以从任意节点开始向前或向后遍历,并且可以无限期地继续。

        选择哪种链表类型取决于你的具体需求。例如,如果你需要频繁地在链表的两端插入和删除元素,双向链表可能是一个好的选择。如果你需要在链表中进行循环遍历,那么单向循环链表或双向循环链表可能更适合。

关于它们的更具体实现和应用后面再详细讲解。

这篇关于【第二节】C/C++数据结构之线性表的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1030120

相关文章

C++中实现调试日志输出

《C++中实现调试日志输出》在C++编程中,调试日志对于定位问题和优化代码至关重要,本文将介绍几种常用的调试日志输出方法,并教你如何在日志中添加时间戳,希望对大家有所帮助... 目录1. 使用 #ifdef _DEBUG 宏2. 加入时间戳:精确到毫秒3.Windows 和 MFC 中的调试日志方法MFC

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

在 VSCode 中配置 C++ 开发环境的详细教程

《在VSCode中配置C++开发环境的详细教程》本文详细介绍了如何在VisualStudioCode(VSCode)中配置C++开发环境,包括安装必要的工具、配置编译器、设置调试环境等步骤,通... 目录如何在 VSCode 中配置 C++ 开发环境:详细教程1. 什么是 VSCode?2. 安装 VSCo

C++11的函数包装器std::function使用示例

《C++11的函数包装器std::function使用示例》C++11引入的std::function是最常用的函数包装器,它可以存储任何可调用对象并提供统一的调用接口,以下是关于函数包装器的详细讲解... 目录一、std::function 的基本用法1. 基本语法二、如何使用 std::function

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

06 C++Lambda表达式

lambda表达式的定义 没有显式模版形参的lambda表达式 [捕获] 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 有显式模版形参的lambda表达式 [捕获] <模版形参> 模版约束 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 含义 捕获:包含零个或者多个捕获符的逗号分隔列表 模板形参:用于泛型lambda提供个模板形参的名