Python | R 潜在混合模型

2024-06-04 06:04
文章标签 python 模型 混合 潜在

本文主要是介绍Python | R 潜在混合模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

📜用例

📜Python | MATLAB | R 心理认知数学图形模型推断 | 📜信用卡消费高斯混合模型 | 📜必修课学业成绩分布异常背景混合模型潜在类别分析

✒️潜在混合模型

本质上,混合模型(或混合分布)是将多个概率分布组合成一个概率分布。
P ( x ) = π 0 p 0 ( x ) + π 1 p 1 ( x ) + … + π i p i ( x ) s.t.  ∑ π i = 1 \begin{gathered} P(x)=\pi_0 p_0(x)+\pi_1 p_1(x)+\ldots+\pi_i p_i(x) \\ \text { s.t. } \sum \pi_i=1 \end{gathered} P(x)=π0p0(x)+π1p1(x)++πipi(x) s.t. πi=1
为了将这些分布组合在一起,我们为每个成分分布分配一个权重,使得该分布下的总概率总和为 1。一个简单的例子是包含 2 个高斯分布的混合分布。我们可以有 2 个具有不同均值和方差的分布,并使用不同的权重将这 2 个分布组合在一起。

具体来说,我们可以认为该分布源自一个两步生成过程。在此过程中,可以从 n 个不同的概率分布中生成一个数据点。首先,我们确定它来自哪个概率分布。这个概率就是权重 π i π_i πi。一旦选择了组件概率分布,就可以通过模拟组件概率分布本身来生成数据点。

高斯混合模型本质上是一种混合模型,其中所有分量分布都是高斯分布。
f ( x ) = π 0 N ( μ 0 , Σ 0 ) + π 1 N ( μ 1 , Σ 1 ) + … + π i N ( μ i , Σ i ) s.t.  ∑ π i = 1 \begin{gathered} f(x)=\pi_0 N\left(\mu_0, \Sigma_0\right)+\pi_1 N\left(\mu_1, \Sigma_1\right)+\ldots+\pi_i N\left(\mu_i, \Sigma_i\right) \\ \text { s.t. } \sum \pi_i=1 \end{gathered} f(x)=π0N(μ0,Σ0)+π1N(μ1,Σ1)++πiN(μi,Σi) s.t. πi=1
现在让我们试着理解为什么使用高斯分布来对混合物的成分进行建模。当查看数据集时,我们希望将相似的点聚类在一起。这些聚类通常本质上是球形或椭圆形的,因为我们希望将靠近的点聚类在一起。因此,正态分布是集群的良好模型。分布的均值将是簇的中心,而簇的形状和分布可以通过分布的协方差很好地建模。

集群的第二个变量是不同集群的相对大小。在有机数据集中,我们通常不期望集群的大小相同,这意味着某些集群的点数会比其他集群多。然后,集群的大小将由集群权重 π i \pi_i πi 决定。

在聚类的背景下,我们假设有 k k k 个影响因素影响数据的生成。每个影响因素都有不同的权重,对应于簇权重 π π π​​。

💦Python高斯混合模型

  • 基于概率的软聚类方法
  • 每个簇:一个生成模型(高斯或多项式)
  • 参数(例如平均值/协方差未知)

让我们生成一个示例数据集,其中点是从两个高斯过程之一生成的。第一个分布的平均值为 100,第二个分布的平均值为 90;和分布的标准差分别为 5 和 2。

第一个过程我们将获得60,000积分;第二个过程中50,000个点并将它们混合在一起。

import numpy as np
np.random.seed(0)import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
Mean1, Mean2  = 100.0, 90.0
Standard_dev1, Standard_dev2 = 5.0, 2.0
sample1, sample2 = 60000, 50000print('Input Normal_distb {:}: μ = {:1}, σ = {:.2}, n = {} '.format("1", Mean1, Standard_dev1, sample1))
print('Input Normal_distb {:}: μ = {:1}, σ = {:.2}, n = {} '.format("2", Mean2, Standard_dev2, sample2))
X1 = np.random.normal(loc = Mean1, scale = Standard_dev1, size = sample1)
X2 = np.random.normal(loc = Mean2, scale = Standard_dev2, size = sample2)# plot
fig = plt.figure(figsize=(8, 6), dpi=100)
sns.distplot(X1, bins=50, kde=True, norm_hist=True, label='Normal distribution 1')
sns.distplot(X2, bins=50, kde=True, norm_hist=True, label='Normal distribution 2')
plt.legend()
plt.show()
# save
fig.savefig('norm_distrib12.jpeg')
# mix two distrib together
X = np.hstack((X1, X2))# plot
fig = plt.figure(figsize=(8, 6), dpi=100)
sns.distplot(X, bins=50, kde=True, norm_hist=True, label='gaussian mixture')
plt.legend()
plt.show()
# save
fig.savefig('final_dt.jpeg')

因此,将这些过程混合在一起后,我们就得到了上图所示的数据集。我们可以注意到 2 个峰值:大约 90 和 100,但对于峰值中间的许多点,很难确定它们来自哪个分布。那么我们如何解决这个任务呢?我们可以使用高斯混合模型,该模型将使用期望最大化算法来估计分布的参数。

💦潜在变量最大似然估计(算法):

X = X.reshape((len(X), 1))  
from sklearn.mixture import GaussianMixtureGMM = GaussianMixture(n_components = 2, init_params = 'random')
GMM.fit(X)
print('Converged:', GMM.converged_) # check if the model has converged
Y = np.array([[105.0]])
prediction = GMM.predict_proba(Y)
print('Probability each Gaussian (state) in the model given each sample p = {}'.format(prediction))
print()
yhat = GMM.predict(X)print(yhat[:100])
print(yhat[-100:])
print(len(yhat[yhat==0]))
print(len(yhat[yhat==1]))

多元高斯:d > 1

from sklearn.datasets.samples_generator import make_blobs
from scipy.stats import multivariate_normalX, Y = make_blobs(cluster_std=1.0, random_state=123, n_samples=12000, centers=3)X = np.dot(X, np.random.RandomState(0).randn(2,2))x, y = np.meshgrid(np.sort(X[:,0]), np.sort(X[:,1]))
XY = np.array([x.flatten(), y.flatten()]).TGMM = GaussianMixture(n_components=3).fit(X) # instantiate and fit the model
print('Converged:', GMM.converged_) # check if the model has converged
means = GMM.means_ 
covariances = GMM.covariances_Y = np.array([[0.5], [0.5]])
prediction = GMM.predict_proba(Y.T)
print('Probability each Gaussian (state) in the model given each sample p = {}'.format(prediction))fig = plt.figure(figsize = (12,12), dpi = 100)
ax0 = fig.add_subplot(111)
ax0.scatter(X[:,0], X[:,1])
ax0.scatter(Y[0,:], Y[1,:], c = 'orange', zorder = 10, s = 100)
for m,c in zip(means,covariances):multi_normal = multivariate_normal(mean = m, cov = c)ax0.contour(np.sort(X[:,0]), np.sort(X[:,1]), multi_normal.pdf(XY).reshape(len(X), len(X)), colors='black', alpha=0.3)ax0.scatter(m[0], m[1], c = 'grey', zorder = 10, s = 100)plt.show()fig.savefig('2d.jpeg')

👉参阅一:计算思维

👉参阅二:亚图跨际

这篇关于Python | R 潜在混合模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1029257

相关文章

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

基于Python开发电脑定时关机工具

《基于Python开发电脑定时关机工具》这篇文章主要为大家详细介绍了如何基于Python开发一个电脑定时关机工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 简介2. 运行效果3. 相关源码1. 简介这个程序就像一个“忠实的管家”,帮你按时关掉电脑,而且全程不需要你多做

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

Python中使用defaultdict和Counter的方法

《Python中使用defaultdict和Counter的方法》本文深入探讨了Python中的两个强大工具——defaultdict和Counter,并详细介绍了它们的工作原理、应用场景以及在实际编... 目录引言defaultdict的深入应用什么是defaultdictdefaultdict的工作原理

Python中@classmethod和@staticmethod的区别

《Python中@classmethod和@staticmethod的区别》本文主要介绍了Python中@classmethod和@staticmethod的区别,文中通过示例代码介绍的非常详细,对大... 目录1.@classmethod2.@staticmethod3.例子1.@classmethod

Python手搓邮件发送客户端

《Python手搓邮件发送客户端》这篇文章主要为大家详细介绍了如何使用Python手搓邮件发送客户端,支持发送邮件,附件,定时发送以及个性化邮件正文,感兴趣的可以了解下... 目录1. 简介2.主要功能2.1.邮件发送功能2.2.个性签名功能2.3.定时发送功能2. 4.附件管理2.5.配置加载功能2.6.