Python | R 潜在混合模型

2024-06-04 06:04
文章标签 python 模型 混合 潜在

本文主要是介绍Python | R 潜在混合模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

📜用例

📜Python | MATLAB | R 心理认知数学图形模型推断 | 📜信用卡消费高斯混合模型 | 📜必修课学业成绩分布异常背景混合模型潜在类别分析

✒️潜在混合模型

本质上,混合模型(或混合分布)是将多个概率分布组合成一个概率分布。
P ( x ) = π 0 p 0 ( x ) + π 1 p 1 ( x ) + … + π i p i ( x ) s.t.  ∑ π i = 1 \begin{gathered} P(x)=\pi_0 p_0(x)+\pi_1 p_1(x)+\ldots+\pi_i p_i(x) \\ \text { s.t. } \sum \pi_i=1 \end{gathered} P(x)=π0p0(x)+π1p1(x)++πipi(x) s.t. πi=1
为了将这些分布组合在一起,我们为每个成分分布分配一个权重,使得该分布下的总概率总和为 1。一个简单的例子是包含 2 个高斯分布的混合分布。我们可以有 2 个具有不同均值和方差的分布,并使用不同的权重将这 2 个分布组合在一起。

具体来说,我们可以认为该分布源自一个两步生成过程。在此过程中,可以从 n 个不同的概率分布中生成一个数据点。首先,我们确定它来自哪个概率分布。这个概率就是权重 π i π_i πi。一旦选择了组件概率分布,就可以通过模拟组件概率分布本身来生成数据点。

高斯混合模型本质上是一种混合模型,其中所有分量分布都是高斯分布。
f ( x ) = π 0 N ( μ 0 , Σ 0 ) + π 1 N ( μ 1 , Σ 1 ) + … + π i N ( μ i , Σ i ) s.t.  ∑ π i = 1 \begin{gathered} f(x)=\pi_0 N\left(\mu_0, \Sigma_0\right)+\pi_1 N\left(\mu_1, \Sigma_1\right)+\ldots+\pi_i N\left(\mu_i, \Sigma_i\right) \\ \text { s.t. } \sum \pi_i=1 \end{gathered} f(x)=π0N(μ0,Σ0)+π1N(μ1,Σ1)++πiN(μi,Σi) s.t. πi=1
现在让我们试着理解为什么使用高斯分布来对混合物的成分进行建模。当查看数据集时,我们希望将相似的点聚类在一起。这些聚类通常本质上是球形或椭圆形的,因为我们希望将靠近的点聚类在一起。因此,正态分布是集群的良好模型。分布的均值将是簇的中心,而簇的形状和分布可以通过分布的协方差很好地建模。

集群的第二个变量是不同集群的相对大小。在有机数据集中,我们通常不期望集群的大小相同,这意味着某些集群的点数会比其他集群多。然后,集群的大小将由集群权重 π i \pi_i πi 决定。

在聚类的背景下,我们假设有 k k k 个影响因素影响数据的生成。每个影响因素都有不同的权重,对应于簇权重 π π π​​。

💦Python高斯混合模型

  • 基于概率的软聚类方法
  • 每个簇:一个生成模型(高斯或多项式)
  • 参数(例如平均值/协方差未知)

让我们生成一个示例数据集,其中点是从两个高斯过程之一生成的。第一个分布的平均值为 100,第二个分布的平均值为 90;和分布的标准差分别为 5 和 2。

第一个过程我们将获得60,000积分;第二个过程中50,000个点并将它们混合在一起。

import numpy as np
np.random.seed(0)import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
Mean1, Mean2  = 100.0, 90.0
Standard_dev1, Standard_dev2 = 5.0, 2.0
sample1, sample2 = 60000, 50000print('Input Normal_distb {:}: μ = {:1}, σ = {:.2}, n = {} '.format("1", Mean1, Standard_dev1, sample1))
print('Input Normal_distb {:}: μ = {:1}, σ = {:.2}, n = {} '.format("2", Mean2, Standard_dev2, sample2))
X1 = np.random.normal(loc = Mean1, scale = Standard_dev1, size = sample1)
X2 = np.random.normal(loc = Mean2, scale = Standard_dev2, size = sample2)# plot
fig = plt.figure(figsize=(8, 6), dpi=100)
sns.distplot(X1, bins=50, kde=True, norm_hist=True, label='Normal distribution 1')
sns.distplot(X2, bins=50, kde=True, norm_hist=True, label='Normal distribution 2')
plt.legend()
plt.show()
# save
fig.savefig('norm_distrib12.jpeg')
# mix two distrib together
X = np.hstack((X1, X2))# plot
fig = plt.figure(figsize=(8, 6), dpi=100)
sns.distplot(X, bins=50, kde=True, norm_hist=True, label='gaussian mixture')
plt.legend()
plt.show()
# save
fig.savefig('final_dt.jpeg')

因此,将这些过程混合在一起后,我们就得到了上图所示的数据集。我们可以注意到 2 个峰值:大约 90 和 100,但对于峰值中间的许多点,很难确定它们来自哪个分布。那么我们如何解决这个任务呢?我们可以使用高斯混合模型,该模型将使用期望最大化算法来估计分布的参数。

💦潜在变量最大似然估计(算法):

X = X.reshape((len(X), 1))  
from sklearn.mixture import GaussianMixtureGMM = GaussianMixture(n_components = 2, init_params = 'random')
GMM.fit(X)
print('Converged:', GMM.converged_) # check if the model has converged
Y = np.array([[105.0]])
prediction = GMM.predict_proba(Y)
print('Probability each Gaussian (state) in the model given each sample p = {}'.format(prediction))
print()
yhat = GMM.predict(X)print(yhat[:100])
print(yhat[-100:])
print(len(yhat[yhat==0]))
print(len(yhat[yhat==1]))

多元高斯:d > 1

from sklearn.datasets.samples_generator import make_blobs
from scipy.stats import multivariate_normalX, Y = make_blobs(cluster_std=1.0, random_state=123, n_samples=12000, centers=3)X = np.dot(X, np.random.RandomState(0).randn(2,2))x, y = np.meshgrid(np.sort(X[:,0]), np.sort(X[:,1]))
XY = np.array([x.flatten(), y.flatten()]).TGMM = GaussianMixture(n_components=3).fit(X) # instantiate and fit the model
print('Converged:', GMM.converged_) # check if the model has converged
means = GMM.means_ 
covariances = GMM.covariances_Y = np.array([[0.5], [0.5]])
prediction = GMM.predict_proba(Y.T)
print('Probability each Gaussian (state) in the model given each sample p = {}'.format(prediction))fig = plt.figure(figsize = (12,12), dpi = 100)
ax0 = fig.add_subplot(111)
ax0.scatter(X[:,0], X[:,1])
ax0.scatter(Y[0,:], Y[1,:], c = 'orange', zorder = 10, s = 100)
for m,c in zip(means,covariances):multi_normal = multivariate_normal(mean = m, cov = c)ax0.contour(np.sort(X[:,0]), np.sort(X[:,1]), multi_normal.pdf(XY).reshape(len(X), len(X)), colors='black', alpha=0.3)ax0.scatter(m[0], m[1], c = 'grey', zorder = 10, s = 100)plt.show()fig.savefig('2d.jpeg')

👉参阅一:计算思维

👉参阅二:亚图跨际

这篇关于Python | R 潜在混合模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1029257

相关文章

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调