如何利用CXL技术突破内存墙?-2

2024-06-04 02:52
文章标签 技术 内存 突破 cxl

本文主要是介绍如何利用CXL技术突破内存墙?-2,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

为了解决这些问题,业界正积极寻求新的技术和标准,比如Compute Express Link (CXL),它旨在通过提供标准化的高速互连来提高内存带宽、降低延迟,并简化内存扩展的软件集成,从而有效地打破内存墙的限制。

通过使用CXL(Compute Express Link)技术来突破内存墙,可以实现以下几项关键改进,比如一个CXL控制器厂商测试方案:

图片

  1. 增加服务器内存带宽和容量50%:CXL通过提供一个高速、低延迟的互连标准,使得服务器能够外接更多的内存资源,而不局限于主板上的物理插槽。这样,服务器内存的带宽(数据传输速度)和容量得以显著提升,理论上可以达到现有配置的1.5倍,从而更好地满足高性能计算和大数据处理的需求。

  2. 降低延迟25%:CXL技术设计时考虑到了低延迟通信,使得处理器能够更快地访问外部扩展的内存资源,相较于传统外部存储或网络存储方案,访问时间减少约四分之一。这有助于减少数据等待时间,提升系统响应速度和整体计算效率。

  3. 使用标准DRAM以实现灵活的供应链和成本控制:CXL兼容标准DRAM技术,这意味着企业可以在全球供应链中选择更广泛的内存供应商,有利于成本控制和供应稳定。标准化还简化了内存的采购流程,减少了定制化硬件的成本,使内存升级和维护更加经济高效。

  4. 无缝扩展内存以支持现有和新应用:CXL使得内存资源可以根据实际应用需求动态扩展,无论是对于已有的传统应用还是新兴的内存密集型应用,如人工智能、大数据分析等,都能通过简单的硬件添加来提升内存支持,无需对软件架构做重大调整。这种扩展性保证了系统的未来适应性和灵活性,降低了技术更新换代的成本。

CXL技术为数据中心和高性能计算环境提供了一种有效的解决方案,它不仅提升了内存的性能和容量,而且通过标准化和低延迟特性,简化了系统集成和管理,最终帮助用户突破了内存墙的限制,实现了更高效的数据处理和应用性能。

OLTP(Online Transaction Processing)与OLAP(Online Analytical Processing)是两种不同的数据库操作类型,它们在处理数据和目标上有所区别,而CXL(Compute Express Link)技术在这两种场景下的应用结果展示出了显著的性能提升。

OLTP通常涉及大量并发的小型事务,如银行交易、电子商务订单等,侧重于数据的插入、更新和删除操作,要求极高的事务处理速度和数据一致性。使用CXL内存的测试结果显示,与仅使用本地DDR5-5600内存的系统相比,使用CXL内存和MemVerge Memory Machine进行内存分层后,事务处理能力(TPS)提高了150%,同时CPU利用率提高了15%。

图片

OLAP则是面向数据分析,主要用于复杂的查询和报告,侧重于从大量历史数据中提取信息,进行汇总、分析和预测,如商业智能报表。在OLAP测试中,与仅使用本地DDR5-5600内存的系统相比,结合CXL内存的系统在处理TPC-H(采用1000规模因子)时,能够显著降低大查询时间,几乎减半。

图片

CXL在多个应用领域都有很好的应用前景,比如计算流体动力学(Computational Fluid Dynamics, CFD)、天气研究与预报(Weather Research and Forecasting, WRF)、计算电磁学(Computational Electromagnetics)、区域海洋建模系统(Regional Ocean Modeling System, ROMS)等应用,这些应用往往需要处理大量数据并行计算。

图片

CXL通过内存扩展,使得每个插槽的内存容量可以增加至2.33倍,同时内存带宽提升1.66倍,这对于内存密集型应用来说,意味着可以处理更大数据集而不会受到传统内存限制。

图片

CXL作为一种内存互连技术,对于应对现代数据密集型应用的挑战,尤其是内存墙问题,提供了有效的解决方案。

  • 这对于如SAP HANA这样的内存数据库系统尤为重要,它原本可能受限于服务器DIMM插槽数量,但通过CXL,可以用更少的双路系统达到更高的内存配置,降低了总体拥有成本(TCO)并减少了能耗。

  • 在AI推理和复杂的推荐引擎中,CXL内存扩展提供了足够的内存带宽和低延迟,以支持快速的数据处理和模型查询,提升用户体验。

参考文献

1.https://computeexpresslink.org/wp-content/uploads/2023/12/CXL_3.1-White-Paper_FINAL.pdf

2.https://www.rambus.com/blogs/compute-express-link/

3.CXL Smart Memory Controllers:《Breaking Through the Memory Wall with CXL》


如果您看完有所受益,欢迎点击文章底部左下角“关注”并点击“分享”、“在看”,非常感谢!

精彩推荐:

  • 磁带存储:“不老的传说”依然在继续

  • 浅析3D NAND多层架构的可靠性问题

  • SSD模拟器MQSim简介与资料分享

  • 孙凝晖院士万字长文|人工智能与智能计算的发展

  • 探究NVMe SSD HMB应用场景与影响

  • 深度剖析:大容量QLC SSD为何遭疯抢?

  • SSD突然掉电,是谁保护了用户数据?

  • 漫谈HAMR硬盘的可靠性

  • 万物皆可计算|下一个风口:近内存计算

  • SSD数据错误如何修复?

  • CXL与PCIe世界的尽头|你相信光吗?

  • 全景剖析SSD SLC Cache缓存设计原理

  • 存储革新:下一代低功耗PCM相变存储器

  • 3D DRAM虽困难重重,最快明年到来

  • 字节跳动入局存储内存SCM

  • PCIe 7.0|不要太卷,劝你先躺平

  • SSD LDPC软错误探测方案解读

  • 关于SSD LDPC纠错能力的基础探究

  • 存储系统如何规避数据静默错误?

  • PCIe P2P DMA全景解读

  • 深度解读NVMe计算存储协议

  • 对于超低延迟SSD,IO调度器已经过时了吗?

  • 浅析CXL P2P DMA加速数据传输的原理

  • HDD回暖于2024,与SSD决战于2028

  • FIO测试参数与linux内核IO栈的关联分析

  • NVMe over CXL技术如何加速Host与SSD数据传输?

  • 浅析LDPC软解码对SSD延迟的影响

  • 为什么QLC NAND才是ZNS SSD最大的赢家?

  • SSD在AI发展中的关键作用:从高速缓存到数据湖

  • 浅析不同NAND架构的差异与影响

  • SSD基础架构与NAND IO并发问题探讨

  • 字节跳动ZNS SSD应用案例解析

  • CXL崛起:2024启航,2025年开启新时代

  • NVMe SSD:ZNS与FDP对决,你选谁?

  • 浅析PCI配置空间

  • 浅析PCIe系统性能

  • 存储随笔《NVMe专题》大合集及PDF版正式发布!

如果您也想针对存储行业分享自己的想法和经验,诚挚欢迎您的大作。
投稿邮箱:Memory_logger@163.com (投稿就有惊喜哦~)

《存储随笔》自媒体矩阵

图片

更多存储随笔科普视频讲解,请移步B站账号

图片

如您有任何的建议与指正,敬请在文章底部留言,感谢您不吝指教!如有相关合作意向,请后台私信,小编会尽快给您取得联系,谢谢!

这篇关于如何利用CXL技术突破内存墙?-2的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1028862

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

Golang基于内存的键值存储缓存库go-cache

《Golang基于内存的键值存储缓存库go-cache》go-cache是一个内存中的key:valuestore/cache库,适用于单机应用程序,本文主要介绍了Golang基于内存的键值存储缓存库... 目录文档安装方法示例1示例2使用注意点优点缺点go-cache 和 Redis 缓存对比1)功能特性

Go使用pprof进行CPU,内存和阻塞情况分析

《Go使用pprof进行CPU,内存和阻塞情况分析》Go语言提供了强大的pprof工具,用于分析CPU、内存、Goroutine阻塞等性能问题,帮助开发者优化程序,提高运行效率,下面我们就来深入了解下... 目录1. pprof 介绍2. 快速上手:启用 pprof3. CPU Profiling:分析 C

golang内存对齐的项目实践

《golang内存对齐的项目实践》本文主要介绍了golang内存对齐的项目实践,内存对齐不仅有助于提高内存访问效率,还确保了与硬件接口的兼容性,是Go语言编程中不可忽视的重要优化手段,下面就来介绍一下... 目录一、结构体中的字段顺序与内存对齐二、内存对齐的原理与规则三、调整结构体字段顺序优化内存对齐四、内

Linux内存泄露的原因排查和解决方案(内存管理方法)

《Linux内存泄露的原因排查和解决方案(内存管理方法)》文章主要介绍了运维团队在Linux处理LB服务内存暴涨、内存报警问题的过程,从发现问题、排查原因到制定解决方案,并从中学习了Linux内存管理... 目录一、问题二、排查过程三、解决方案四、内存管理方法1)linux内存寻址2)Linux分页机制3)

Java循环创建对象内存溢出的解决方法

《Java循环创建对象内存溢出的解决方法》在Java中,如果在循环中不当地创建大量对象而不及时释放内存,很容易导致内存溢出(OutOfMemoryError),所以本文给大家介绍了Java循环创建对象... 目录问题1. 解决方案2. 示例代码2.1 原始版本(可能导致内存溢出)2.2 修改后的版本问题在