基于DeepLabv3+实现图像分割

2024-06-04 01:12
文章标签 实现 图像 分割 deeplabv3

本文主要是介绍基于DeepLabv3+实现图像分割,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 1. 作者介绍
  • 2. DeepLabv3+算法
    • 2.1 DeepLabv3+算法介绍
    • 2.2 DeepLabv3+模型结构
  • 3. 实验过程基于DeepLabv3+实现图像分割
    • 3.1 VOC数据集介绍
    • 3.2 代码实现
    • 3.3 问题分析
  • 4. 参考连接

1. 作者介绍

吴天禧,女,西安工程大学电子信息学院,2023级研究生,张宏伟人工智能课题组
研究方向:模式识别与智能系统
电子邮件:230411046@stu.xpu.edu.cn

路治东,男,西安工程大学电子信息学院,2022级研究生,张宏伟人工智能课题组
研究方向:机器视觉与人工智能
电子邮件:2063079527@qq.com

2. DeepLabv3+算法

2.1 DeepLabv3+算法介绍

DeepLabv3+是一种先进的语义图像分割算法,它通过结合编码器-解码器架构和Atrous卷积来实现对图像中每个像素的精确分类。
该算法利用DeepLabv3作为编码器,有效地捕捉丰富的上下文信息,并通过一个简单而有效的解码器模块来细化分割结果,尤其是在物体的边界区域。Atrous卷积允许模型以任意分辨率提取特征,这为处理不同尺寸的物体提供了灵活性。
此外,DeepLabv3+还采用了Xception模型和深度可分离卷积技术,显著提高了计算效率,同时保持了分割精度。

2.2 DeepLabv3+模型结构

图 1 DeepLabv3+模型结构

图1展示了DeepLabv3+模型的结构,该模型结合了编码器-解码器结构的优势以及空间金字塔池化模块。(a)部分显示了空间金字塔池化(Spatial Pyramid Pooling, SPP)模块,它通过在不同比例的网格上进行池化操作来捕获多尺度上下文信息。(b)部分展示了编码器-解码器(Encoder-Decoder)结构,它能够通过逐步恢复空间信息来捕获更锐利的物体边界。©部分则展示了带有Atrous卷积的编码器-解码器结构,这是DeepLabv3+模型的核心,其中编码器模块包含了丰富的语义信息,而解码器模块则用于恢复详细的物体边界。Atrous卷积允许以任意分辨率提取特征,这为模型提供了灵活性。

在这里插入图片描述

图2详细展示了DeepLabv3+模型的编码器和解码器模块。编码器模块通过多尺度的Atrous卷积来编码多尺度上下文信息,而解码器模块则用于细化分割结果,尤其是在物体边界上。在该模型中,首先使用Atrous卷积提取特征,然后通过解码器模块逐步恢复图像的空间分辨率,以获得更精细的分割效果。

在这里插入图片描述

图3解释了深度可分离卷积的概念,这是一种减少计算复杂度的技术。(a)图展示了深度卷积(Depthwise Convolution),它对每个输入通道独立应用卷积核。(b)图展示了点卷积(Pointwise Convolution),它在深度卷积的输出上进行1x1的卷积,以组合不同通道的信息。©图展示了Atrous深度可分离卷积,这是在深度卷积中应用了Atrous卷积,允许模型以不同的采样率来捕获多尺度信息。

在这里插入图片描述

图4描述了对Xception模型的修改,使其更适合于语义图像分割任务。修改包括增加更多的层以捕获更深层次的特征,将所有最大池化操作替换为带有步长的深度可分离卷积,以及在每个3x3深度卷积后添加额外的批量归一化(Batch Normalization)和ReLU激活函数,这与MobileNet的设计相似。

3. 实验过程基于DeepLabv3+实现图像分割

3.1 VOC数据集介绍

PASCAL VOC挑战赛 (The PASCAL Visual Object Classes )是一个世界级的计算机视觉挑战赛,PASCAL全称:Pattern Analysis, Statical Modeling and Computational Learning,是一个由欧盟资助的网络组织。PASCAL VOC挑战赛主要包括以下几类:图像分类(Object Classification),目标检测(Object Detection),目标分割(Object Segmentation),行为识别(Action Classification) 等。

在这里插入图片描述
下面是数据集的展示,包括(a)图像分类与目标检测任务;(b)分割任务,注意,图像分割一般包括语义分割、实例分割和全景分割,实例分割是要把每个单独的目标用一种颜色表示(下图中间的图像),而语义分割只是把同一类别的所有目标用同一颜色表示(下图右侧的图片);(c)行为识别任务;(d)人体布局检测任务。

在这里插入图片描述

VOC数据集中主要包含20个目标类别,这个图展示了所有类别的名称以及所属大类。

在这里插入图片描述

3.2 代码实现

Main.py是一个用于图像分割的深度学习训练脚本。

  1. get_argparser() 函数定义了一个命令行参数解析器,允许用户在运行脚本时指定各种配置选项,如数据集路径、模型类型、训练选项、学习率、批大小等。
  2. validate() 函数执行模型的验证,计算指标(如IoU),并可选择保存验证结果和可视化样本。
  3. 主函数 main()
    设置数据集类别数(基于所选数据集);
    初始化可视化工具;
    设置GPU和随机种子;
    加载和初始化数据加载器;
    根据参数构建模型,并将其置于GPU上;
    设置优化器、学习率调度器和损失函数;
    如果提供了检查点文件,恢复训练状态;
    进入训练循环,包括前向传播、损失计算、反向传播和参数更新;
    在每个验证间隔执行验证,并根据验证结果更新最佳模型;
    使用Visdom可视化训练损失和验证指标。
  4. 训练循环:
    模型设置为训练模式;
    迭代训练数据加载器中的批次;
    执行前向传播,计算损失;
    执行反向传播,更新模型参数;
    在指定间隔打印损失并进行可视化;
    定期执行验证,并保存最佳模型。
  5. 检查点保存 save_ckpt() 函数负责保存当前模型的状态、优化器状态、学习率调度器状态和最佳验证分数到文件。
  6. 可视化
    如果启用,使用Visdom可视化训练损失和验证指标。
  7. 模型评估
    如果设置了–test_only ,模型将进行评估而不进行训练。

3.3 问题分析

python main.py --model deeplabv3plus_resnet50 --enable_vis --vis_port 28333 --gpu_id 0 --year 2012 --crop_val --lr 0.01 --crop_size 513 --batch_size 16 --output_stride 16

在这里插入图片描述
下载的voc数据集中没有2008_000942.png图,这个图应该在2012_aug中,但下载的voc2012中没有,训练时改成2012就可以了,测试也一样。

4. 参考连接

  1. Voc数据集
  2. DeepLabv3+论文
  3. 代码:VainF/DeepLabV3Plus-Pytorch: Pretrained DeepLabv3 and DeepLabv3+ for Pascal VOC & Cityscapes

这篇关于基于DeepLabv3+实现图像分割的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1028646

相关文章

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

Qt使用QSqlDatabase连接MySQL实现增删改查功能

《Qt使用QSqlDatabase连接MySQL实现增删改查功能》这篇文章主要为大家详细介绍了Qt如何使用QSqlDatabase连接MySQL实现增删改查功能,文中的示例代码讲解详细,感兴趣的小伙伴... 目录一、创建数据表二、连接mysql数据库三、封装成一个完整的轻量级 ORM 风格类3.1 表结构

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

在Linux中改变echo输出颜色的实现方法

《在Linux中改变echo输出颜色的实现方法》在Linux系统的命令行环境下,为了使输出信息更加清晰、突出,便于用户快速识别和区分不同类型的信息,常常需要改变echo命令的输出颜色,所以本文给大家介... 目python录在linux中改变echo输出颜色的方法技术背景实现步骤使用ANSI转义码使用tpu

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

golang版本升级如何实现

《golang版本升级如何实现》:本文主要介绍golang版本升级如何实现问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录golanwww.chinasem.cng版本升级linux上golang版本升级删除golang旧版本安装golang最新版本总结gola

SpringBoot中SM2公钥加密、私钥解密的实现示例详解

《SpringBoot中SM2公钥加密、私钥解密的实现示例详解》本文介绍了如何在SpringBoot项目中实现SM2公钥加密和私钥解密的功能,通过使用Hutool库和BouncyCastle依赖,简化... 目录一、前言1、加密信息(示例)2、加密结果(示例)二、实现代码1、yml文件配置2、创建SM2工具