基于DeepLabv3+实现图像分割

2024-06-04 01:12
文章标签 实现 图像 分割 deeplabv3

本文主要是介绍基于DeepLabv3+实现图像分割,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 1. 作者介绍
  • 2. DeepLabv3+算法
    • 2.1 DeepLabv3+算法介绍
    • 2.2 DeepLabv3+模型结构
  • 3. 实验过程基于DeepLabv3+实现图像分割
    • 3.1 VOC数据集介绍
    • 3.2 代码实现
    • 3.3 问题分析
  • 4. 参考连接

1. 作者介绍

吴天禧,女,西安工程大学电子信息学院,2023级研究生,张宏伟人工智能课题组
研究方向:模式识别与智能系统
电子邮件:230411046@stu.xpu.edu.cn

路治东,男,西安工程大学电子信息学院,2022级研究生,张宏伟人工智能课题组
研究方向:机器视觉与人工智能
电子邮件:2063079527@qq.com

2. DeepLabv3+算法

2.1 DeepLabv3+算法介绍

DeepLabv3+是一种先进的语义图像分割算法,它通过结合编码器-解码器架构和Atrous卷积来实现对图像中每个像素的精确分类。
该算法利用DeepLabv3作为编码器,有效地捕捉丰富的上下文信息,并通过一个简单而有效的解码器模块来细化分割结果,尤其是在物体的边界区域。Atrous卷积允许模型以任意分辨率提取特征,这为处理不同尺寸的物体提供了灵活性。
此外,DeepLabv3+还采用了Xception模型和深度可分离卷积技术,显著提高了计算效率,同时保持了分割精度。

2.2 DeepLabv3+模型结构

图 1 DeepLabv3+模型结构

图1展示了DeepLabv3+模型的结构,该模型结合了编码器-解码器结构的优势以及空间金字塔池化模块。(a)部分显示了空间金字塔池化(Spatial Pyramid Pooling, SPP)模块,它通过在不同比例的网格上进行池化操作来捕获多尺度上下文信息。(b)部分展示了编码器-解码器(Encoder-Decoder)结构,它能够通过逐步恢复空间信息来捕获更锐利的物体边界。©部分则展示了带有Atrous卷积的编码器-解码器结构,这是DeepLabv3+模型的核心,其中编码器模块包含了丰富的语义信息,而解码器模块则用于恢复详细的物体边界。Atrous卷积允许以任意分辨率提取特征,这为模型提供了灵活性。

在这里插入图片描述

图2详细展示了DeepLabv3+模型的编码器和解码器模块。编码器模块通过多尺度的Atrous卷积来编码多尺度上下文信息,而解码器模块则用于细化分割结果,尤其是在物体边界上。在该模型中,首先使用Atrous卷积提取特征,然后通过解码器模块逐步恢复图像的空间分辨率,以获得更精细的分割效果。

在这里插入图片描述

图3解释了深度可分离卷积的概念,这是一种减少计算复杂度的技术。(a)图展示了深度卷积(Depthwise Convolution),它对每个输入通道独立应用卷积核。(b)图展示了点卷积(Pointwise Convolution),它在深度卷积的输出上进行1x1的卷积,以组合不同通道的信息。©图展示了Atrous深度可分离卷积,这是在深度卷积中应用了Atrous卷积,允许模型以不同的采样率来捕获多尺度信息。

在这里插入图片描述

图4描述了对Xception模型的修改,使其更适合于语义图像分割任务。修改包括增加更多的层以捕获更深层次的特征,将所有最大池化操作替换为带有步长的深度可分离卷积,以及在每个3x3深度卷积后添加额外的批量归一化(Batch Normalization)和ReLU激活函数,这与MobileNet的设计相似。

3. 实验过程基于DeepLabv3+实现图像分割

3.1 VOC数据集介绍

PASCAL VOC挑战赛 (The PASCAL Visual Object Classes )是一个世界级的计算机视觉挑战赛,PASCAL全称:Pattern Analysis, Statical Modeling and Computational Learning,是一个由欧盟资助的网络组织。PASCAL VOC挑战赛主要包括以下几类:图像分类(Object Classification),目标检测(Object Detection),目标分割(Object Segmentation),行为识别(Action Classification) 等。

在这里插入图片描述
下面是数据集的展示,包括(a)图像分类与目标检测任务;(b)分割任务,注意,图像分割一般包括语义分割、实例分割和全景分割,实例分割是要把每个单独的目标用一种颜色表示(下图中间的图像),而语义分割只是把同一类别的所有目标用同一颜色表示(下图右侧的图片);(c)行为识别任务;(d)人体布局检测任务。

在这里插入图片描述

VOC数据集中主要包含20个目标类别,这个图展示了所有类别的名称以及所属大类。

在这里插入图片描述

3.2 代码实现

Main.py是一个用于图像分割的深度学习训练脚本。

  1. get_argparser() 函数定义了一个命令行参数解析器,允许用户在运行脚本时指定各种配置选项,如数据集路径、模型类型、训练选项、学习率、批大小等。
  2. validate() 函数执行模型的验证,计算指标(如IoU),并可选择保存验证结果和可视化样本。
  3. 主函数 main()
    设置数据集类别数(基于所选数据集);
    初始化可视化工具;
    设置GPU和随机种子;
    加载和初始化数据加载器;
    根据参数构建模型,并将其置于GPU上;
    设置优化器、学习率调度器和损失函数;
    如果提供了检查点文件,恢复训练状态;
    进入训练循环,包括前向传播、损失计算、反向传播和参数更新;
    在每个验证间隔执行验证,并根据验证结果更新最佳模型;
    使用Visdom可视化训练损失和验证指标。
  4. 训练循环:
    模型设置为训练模式;
    迭代训练数据加载器中的批次;
    执行前向传播,计算损失;
    执行反向传播,更新模型参数;
    在指定间隔打印损失并进行可视化;
    定期执行验证,并保存最佳模型。
  5. 检查点保存 save_ckpt() 函数负责保存当前模型的状态、优化器状态、学习率调度器状态和最佳验证分数到文件。
  6. 可视化
    如果启用,使用Visdom可视化训练损失和验证指标。
  7. 模型评估
    如果设置了–test_only ,模型将进行评估而不进行训练。

3.3 问题分析

python main.py --model deeplabv3plus_resnet50 --enable_vis --vis_port 28333 --gpu_id 0 --year 2012 --crop_val --lr 0.01 --crop_size 513 --batch_size 16 --output_stride 16

在这里插入图片描述
下载的voc数据集中没有2008_000942.png图,这个图应该在2012_aug中,但下载的voc2012中没有,训练时改成2012就可以了,测试也一样。

4. 参考连接

  1. Voc数据集
  2. DeepLabv3+论文
  3. 代码:VainF/DeepLabV3Plus-Pytorch: Pretrained DeepLabv3 and DeepLabv3+ for Pascal VOC & Cityscapes

这篇关于基于DeepLabv3+实现图像分割的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1028646

相关文章

C#提取PDF表单数据的实现流程

《C#提取PDF表单数据的实现流程》PDF表单是一种常见的数据收集工具,广泛应用于调查问卷、业务合同等场景,凭借出色的跨平台兼容性和标准化特点,PDF表单在各行各业中得到了广泛应用,本文将探讨如何使用... 目录引言使用工具C# 提取多个PDF表单域的数据C# 提取特定PDF表单域的数据引言PDF表单是一

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫

PyCharm接入DeepSeek实现AI编程的操作流程

《PyCharm接入DeepSeek实现AI编程的操作流程》DeepSeek是一家专注于人工智能技术研发的公司,致力于开发高性能、低成本的AI模型,接下来,我们把DeepSeek接入到PyCharm中... 目录引言效果演示创建API key在PyCharm中下载Continue插件配置Continue引言

MySQL分表自动化创建的实现方案

《MySQL分表自动化创建的实现方案》在数据库应用场景中,随着数据量的不断增长,单表存储数据可能会面临性能瓶颈,例如查询、插入、更新等操作的效率会逐渐降低,分表是一种有效的优化策略,它将数据分散存储在... 目录一、项目目的二、实现过程(一)mysql 事件调度器结合存储过程方式1. 开启事件调度器2. 创

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

SQL Server使用SELECT INTO实现表备份的代码示例

《SQLServer使用SELECTINTO实现表备份的代码示例》在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误,在SQLServer中,可以使用SELECTINT... 在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误。在 SQL Server 中,可以使用 SE

基于Go语言实现一个压测工具

《基于Go语言实现一个压测工具》这篇文章主要为大家详细介绍了基于Go语言实现一个简单的压测工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录整体架构通用数据处理模块Http请求响应数据处理Curl参数解析处理客户端模块Http客户端处理Grpc客户端处理Websocket客户端

Java CompletableFuture如何实现超时功能

《JavaCompletableFuture如何实现超时功能》:本文主要介绍实现超时功能的基本思路以及CompletableFuture(之后简称CF)是如何通过代码实现超时功能的,需要的... 目录基本思路CompletableFuture 的实现1. 基本实现流程2. 静态条件分析3. 内存泄露 bug

C#实现添加/替换/提取或删除Excel中的图片

《C#实现添加/替换/提取或删除Excel中的图片》在Excel中插入与数据相关的图片,能将关键数据或信息以更直观的方式呈现出来,使文档更加美观,下面我们来看看如何在C#中实现添加/替换/提取或删除E... 在Excandroidel中插入与数据相关的图片,能将关键数据或信息以更直观的方式呈现出来,使文档更

C#实现系统信息监控与获取功能

《C#实现系统信息监控与获取功能》在C#开发的众多应用场景中,获取系统信息以及监控用户操作有着广泛的用途,比如在系统性能优化工具中,需要实时读取CPU、GPU资源信息,本文将详细介绍如何使用C#来实现... 目录前言一、C# 监控键盘1. 原理与实现思路2. 代码实现二、读取 CPU、GPU 资源信息1.