Pandas读取文本文件为多列

2024-06-04 01:04

本文主要是介绍Pandas读取文本文件为多列,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

要使用Pandas将文本文件读取为多列数据,你可以使用pandas.read_csv()函数,并通过指定适当的分隔符来确保正确解析文件中的数据并将其分隔到多个列中。

假设你有一个以逗号分隔的文本文件(CSV格式),每一行包含多个值,你可以这样读取它:

在这里插入图片描述

1、问题背景

当使用Pandas读取文本文件时,可能会遇到整行被读为一列的情况,导致数据无法正确解析。

2、解决方案

有两种常见的解决方案:

  1. 使用正确的分隔符:确保使用的分隔符与文本文件中的数据分隔符一致。在示例中,分隔符应为r’\s+'(一个或多个空格)。
  2. 使用delim_whitespace=True:设置delim_whitespace参数为True,Pandas会自动检测分隔符,并根据空格将文本文件中的数据分隔为多列。

下面是使用正确分隔符的示例代码:

import pandas as pd
from StringIO import StringIOa = '''
TRE-G3T- Triumph-        0.000 11/06/2013 313585.10 1765.00000 11/06/2013 313600.10   41 20 54.57907  -70 38 14.25924      -30.400       -1.379   893059.006  2588821.543     2834.294   -19545.615      -45.849        0.985        1.058        3.399        3.694      -15.203        1.099   1.0000 6   6.37  4        0.000 I             -0.084     0.086    -0.059   0.000   0.000   0.000   363026.471  4578737.512      -30.400
TRE-G3T- Triumph-        0.000 11/06/2013 313585.20 1765.00000 11/06/2013 313600.20   41 20 54.61145  -70 38 14.22044      -30.332       -1.311   893061.933  2588824.850     2835.196   -19544.617      -45.779        0.944        1.015        3.313        3.592      -15.135       -3.365   1.4883 6   6.35  4        0.001 I              0.833    -0.485    -1.570   0.000   0.000   0.000   363027.391  4578738.493      -30.332
TRE-G3T- Triumph-        0.000 11/06/2013 313585.30 1765.00000 11/06/2013 313600.30   41 20 54.48685  -70 38 14.10862      -29.190       -0.169   893070.589  2588812.325     2837.797   -19548.465      -44.651        0.950        1.017        3.254        3.539      -13.994       -8.197   1.0000 6   5.70  4        0.001 I             -0.158     0.003     0.061   0.000   0.000   0.000   363029.917  4578734.602      -29.190
'''df = pd.read_csv(StringIO(a), delimiter=r'\s+', header=None)print(df.shape)
print(df.head())

输出结果:

(3, 42)0         1   2           3         4     5           6         7   \
0  TRE-G3T-  Triumph-   0  11/06/2013  313585.1  1765  11/06/2013  313600.1   
1  TRE-G3T-  Triumph-   0  11/06/2013  313585.2  1765  11/06/2013  313600.2   
2  TRE-G3T-  Triumph-   0  11/06/2013  313585.3  1765  11/06/2013  313600.3   8   9         10  11  12        13      14     15          16           17  \
0  41  20  54.57907 -70  38  14.25924 -30.400 -1.379  893059.006  2588821.543   
1  41  20  54.61145 -70  38  14.22044 -30.332 -1.311  893061.933  2588824.850   
2  41  20  54.48685 -70  38  14.10862 -29.190 -0.169  893070.589  2588812.325   18         19      
0  2834.294 -19545.615 ...  
1  2835.196 -19544.617 ...  
2  2837.797 -19548.465 ...  [3 rows x 42 columns]

下面是使用delim_whitespace=True的示例代码:

import pandas as pd
from StringIO import StringIOa = '''
TRE-G3T- Triumph-        0.000 11/06/2013 313585.10 1765.00000 11/06/2013 313600.10   41 20 54.57907  -70 38 14.25924      -30.400       -1.379   893059.006  2588821.543     2834.294   -19545.615      -45.849        0.985        1.058        3.399        3.694      -15.203        1.099   1.0000 6   6.37  4        0.000 I             -0.084     0.086    -0.059   0.000   0.000   0.000   363026.471  4578737.512      -30.400
TRE-G3T- Triumph-        0.000 11/06/2013 313585.20 1765.00000 11/06/2013 313600.20   41 20 54.61145  -70 38 1

所以说最终无论我们的文本文件使用何种分隔符,Pandas都提供了灵活的方式来读取它并将其解析为多列数据。今天的知识就介绍到这里,有啥问题可以截图留言讨论。

这篇关于Pandas读取文本文件为多列的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1028620

相关文章

MySQL多列IN查询的实现

《MySQL多列IN查询的实现》多列IN查询是一种强大的筛选工具,它允许通过多字段组合快速过滤数据,本文主要介绍了MySQL多列IN查询的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录一、基础语法:多列 IN 的两种写法1. 直接值列表2. 子查询二、对比传统 OR 的写法三、性能分析与优化1.

Python下载Pandas包的步骤

《Python下载Pandas包的步骤》:本文主要介绍Python下载Pandas包的步骤,在python中安装pandas库,我采取的方法是用PIP的方法在Python目标位置进行安装,本文给大... 目录安装步骤1、首先找到我们安装python的目录2、使用命令行到Python安装目录下3、我们回到Py

解决Java中基于GeoTools的Shapefile读取乱码的问题

《解决Java中基于GeoTools的Shapefile读取乱码的问题》本文主要讨论了在使用Java编程语言进行地理信息数据解析时遇到的Shapefile属性信息乱码问题,以及根据不同的编码设置进行属... 目录前言1、Shapefile属性字段编码的情况:一、Shp文件常见的字符集编码1、System编码

利用Python实现添加或读取Excel公式

《利用Python实现添加或读取Excel公式》Excel公式是数据处理的核心工具,从简单的加减运算到复杂的逻辑判断,掌握基础语法是高效工作的起点,下面我们就来看看如何使用Python进行Excel公... 目录python Excel 库安装Python 在 Excel 中添加公式/函数Python 读取

Python如何实现读取csv文件时忽略文件的编码格式

《Python如何实现读取csv文件时忽略文件的编码格式》我们再日常读取csv文件的时候经常会发现csv文件的格式有多种,所以这篇文章为大家介绍了Python如何实现读取csv文件时忽略文件的编码格式... 目录1、背景介绍2、库的安装3、核心代码4、完整代码1、背景介绍我们再日常读取csv文件的时候经常

解读Pandas和Polars的区别及说明

《解读Pandas和Polars的区别及说明》Pandas和Polars是Python中用于数据处理的两个库,Pandas适用于中小规模数据的快速原型开发和复杂数据操作,而Polars则专注于高效数据... 目录Pandas vs Polars 对比表使用场景对比Pandas 的使用场景Polars 的使用

Python使用Pandas对比两列数据取最大值的五种方法

《Python使用Pandas对比两列数据取最大值的五种方法》本文主要介绍使用Pandas对比两列数据取最大值的五种方法,包括使用max方法、apply方法结合lambda函数、函数、clip方法、w... 目录引言一、使用max方法二、使用apply方法结合lambda函数三、使用np.maximum函数

C#中读取XML文件的四种常用方法

《C#中读取XML文件的四种常用方法》Xml是Internet环境中跨平台的,依赖于内容的技术,是当前处理结构化文档信息的有力工具,下面我们就来看看C#中读取XML文件的方法都有哪些吧... 目录XML简介格式C#读取XML文件方法使用XmlDocument使用XmlTextReader/XmlTextWr

Pandas中多重索引技巧的实现

《Pandas中多重索引技巧的实现》Pandas中的多重索引功能强大,适用于处理多维数据,本文就来介绍一下多重索引技巧,具有一定的参考价值,感兴趣的可以了解一下... 目录1.多重索引概述2.多重索引的基本操作2.1 选择和切片多重索引2.2 交换层级与重设索引3.多重索引的高级操作3.1 多重索引的分组聚

在Pandas中进行数据重命名的方法示例

《在Pandas中进行数据重命名的方法示例》Pandas作为Python中最流行的数据处理库,提供了强大的数据操作功能,其中数据重命名是常见且基础的操作之一,本文将通过简洁明了的讲解和丰富的代码示例,... 目录一、引言二、Pandas rename方法简介三、列名重命名3.1 使用字典进行列名重命名3.编