Pandas读取文本文件为多列

2024-06-04 01:04

本文主要是介绍Pandas读取文本文件为多列,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

要使用Pandas将文本文件读取为多列数据,你可以使用pandas.read_csv()函数,并通过指定适当的分隔符来确保正确解析文件中的数据并将其分隔到多个列中。

假设你有一个以逗号分隔的文本文件(CSV格式),每一行包含多个值,你可以这样读取它:

在这里插入图片描述

1、问题背景

当使用Pandas读取文本文件时,可能会遇到整行被读为一列的情况,导致数据无法正确解析。

2、解决方案

有两种常见的解决方案:

  1. 使用正确的分隔符:确保使用的分隔符与文本文件中的数据分隔符一致。在示例中,分隔符应为r’\s+'(一个或多个空格)。
  2. 使用delim_whitespace=True:设置delim_whitespace参数为True,Pandas会自动检测分隔符,并根据空格将文本文件中的数据分隔为多列。

下面是使用正确分隔符的示例代码:

import pandas as pd
from StringIO import StringIOa = '''
TRE-G3T- Triumph-        0.000 11/06/2013 313585.10 1765.00000 11/06/2013 313600.10   41 20 54.57907  -70 38 14.25924      -30.400       -1.379   893059.006  2588821.543     2834.294   -19545.615      -45.849        0.985        1.058        3.399        3.694      -15.203        1.099   1.0000 6   6.37  4        0.000 I             -0.084     0.086    -0.059   0.000   0.000   0.000   363026.471  4578737.512      -30.400
TRE-G3T- Triumph-        0.000 11/06/2013 313585.20 1765.00000 11/06/2013 313600.20   41 20 54.61145  -70 38 14.22044      -30.332       -1.311   893061.933  2588824.850     2835.196   -19544.617      -45.779        0.944        1.015        3.313        3.592      -15.135       -3.365   1.4883 6   6.35  4        0.001 I              0.833    -0.485    -1.570   0.000   0.000   0.000   363027.391  4578738.493      -30.332
TRE-G3T- Triumph-        0.000 11/06/2013 313585.30 1765.00000 11/06/2013 313600.30   41 20 54.48685  -70 38 14.10862      -29.190       -0.169   893070.589  2588812.325     2837.797   -19548.465      -44.651        0.950        1.017        3.254        3.539      -13.994       -8.197   1.0000 6   5.70  4        0.001 I             -0.158     0.003     0.061   0.000   0.000   0.000   363029.917  4578734.602      -29.190
'''df = pd.read_csv(StringIO(a), delimiter=r'\s+', header=None)print(df.shape)
print(df.head())

输出结果:

(3, 42)0         1   2           3         4     5           6         7   \
0  TRE-G3T-  Triumph-   0  11/06/2013  313585.1  1765  11/06/2013  313600.1   
1  TRE-G3T-  Triumph-   0  11/06/2013  313585.2  1765  11/06/2013  313600.2   
2  TRE-G3T-  Triumph-   0  11/06/2013  313585.3  1765  11/06/2013  313600.3   8   9         10  11  12        13      14     15          16           17  \
0  41  20  54.57907 -70  38  14.25924 -30.400 -1.379  893059.006  2588821.543   
1  41  20  54.61145 -70  38  14.22044 -30.332 -1.311  893061.933  2588824.850   
2  41  20  54.48685 -70  38  14.10862 -29.190 -0.169  893070.589  2588812.325   18         19      
0  2834.294 -19545.615 ...  
1  2835.196 -19544.617 ...  
2  2837.797 -19548.465 ...  [3 rows x 42 columns]

下面是使用delim_whitespace=True的示例代码:

import pandas as pd
from StringIO import StringIOa = '''
TRE-G3T- Triumph-        0.000 11/06/2013 313585.10 1765.00000 11/06/2013 313600.10   41 20 54.57907  -70 38 14.25924      -30.400       -1.379   893059.006  2588821.543     2834.294   -19545.615      -45.849        0.985        1.058        3.399        3.694      -15.203        1.099   1.0000 6   6.37  4        0.000 I             -0.084     0.086    -0.059   0.000   0.000   0.000   363026.471  4578737.512      -30.400
TRE-G3T- Triumph-        0.000 11/06/2013 313585.20 1765.00000 11/06/2013 313600.20   41 20 54.61145  -70 38 1

所以说最终无论我们的文本文件使用何种分隔符,Pandas都提供了灵活的方式来读取它并将其解析为多列数据。今天的知识就介绍到这里,有啥问题可以截图留言讨论。

这篇关于Pandas读取文本文件为多列的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1028620

相关文章

pandas数据过滤

Pandas 数据过滤方法 Pandas 提供了多种方法来过滤数据,可以根据不同的条件进行筛选。以下是一些常见的 Pandas 数据过滤方法,结合实例进行讲解,希望能帮你快速理解。 1. 基于条件筛选行 可以使用布尔索引来根据条件过滤行。 import pandas as pd# 创建示例数据data = {'Name': ['Alice', 'Bob', 'Charlie', 'Dav

matlab读取NC文件(含group)

matlab读取NC文件(含group): NC文件数据结构: 代码: % 打开 NetCDF 文件filename = 'your_file.nc'; % 替换为你的文件名% 使用 netcdf.open 函数打开文件ncid = netcdf.open(filename, 'NC_NOWRITE');% 查看文件中的组% 假设我们想读取名为 "group1" 的组groupName

argodb自定义函数读取hdfs文件的注意点,避免FileSystem已关闭异常

一、问题描述 一位同学反馈,他写的argo存过中调用了一个自定义函数,函数会加载hdfs上的一个文件,但有些节点会报FileSystem closed异常,同时有时任务会成功,有时会失败。 二、问题分析 argodb的计算引擎是基于spark的定制化引擎,对于自定义函数的调用跟hive on spark的是一致的。udf要通过反射生成实例,然后迭代调用evaluate。通过代码分析,udf在

【Python从入门到进阶】64、Pandas如何实现数据的Concat合并

接上篇《63.Pandas如何实现数据的Merge》 上一篇我们学习了Pandas如何实现数据的Merge,本篇我们来继续学习Pandas如何实现数据的Concat合并。 一、引言 在数据处理过程中,经常需要将多个数据集合并为一个统一的数据集,以便进行进一步的分析或建模。这种需求在多种场景下都非常常见,比如合并不同来源的数据集以获取更全面的信息、将时间序列数据按时间顺序拼接起来以观察长期趋势等

下载/保存/读取 文件,并转成流输出

最近对文件的操作又熟悉了下;现在记载下来:学习在于 坚持!!!不以细小而不为。 实现的是:文件的下载、文件的保存到SD卡、文件的读取输出String 类型、最后是文件转换成流输出;一整套够用了; 重点: 1:   操作网络要记得开线程; 2:更新网络获取的数据 切记用Handler机制; 3:注意代码的可读性(这里面只是保存到SD卡,在项目中切记要对SD卡的有无做判断,然后再获取路径!)

ROS1 + Realsense d455 固件安装+读取rostopic数据

目录 安装固件(一定要匹配)ROS1 wrapper 安装方法Realsense SDK 安装方法Realsense Firmware 安装方法 修改roslaunch配置文件,打开双目图像和IMU数据其他坑点参考链接 安装固件(一定要匹配) 如果你是使用ROS1获取realsense数据的话,一定要注意,SDK, Firmware的版本不是越新越好!!,这是因为intel已经不

Python批量读取身份证信息录入系统和重命名

前言 大家好, 如果你对自动化处理身份证图片感兴趣,可以尝试以下操作:从身份证图片中快速提取信息,填入表格并提交到网页系统。如果你无法完成这个任务,我们将在“Python自动化办公2.0”课程中详细讲解实现整个过程。 实现过程概述: 模块与功能: re 模块:用于从 OCR 识别出的文本中提取所需的信息。 日期模块:计算年龄。 pandas:处理和操作表格数据。 PaddleOCR:百度的

java读取resource/通过文件名获取文件类型

java读取resource java读取resource目录下文件的方法: 借助Guava库的Resource类 Resources.getResource("test.txt") 通过文件名获取文件类型 mongodb java

Unity数据持久化 之 一个通过2进制读取Excel并存储的轮子(4)

本文仅作笔记学习和分享,不用做任何商业用途 本文包括但不限于unity官方手册,unity唐老狮等教程知识,如有不足还请斧正​​ Unity数据持久化 之 一个通过2进制读取Excel并存储的轮子(3)-CSDN博客  这节就是真正的存储数据了   理清一下思路: 1.存储路径并检查 //2进制文件类存储private static string Data_Binary_Pa

Linux下读取默认MAC地址

一、适用范围 这里主要介绍读取网卡MAC地址的方法,适用于EasyARM-i.MX287A开发套件,其应用原理及配套示例也适用于下表1.1所列出的产品型号。 二、原理介绍 MAC(Media Access Control,介质访问控制)是用来定义网络设备的位置。用来表示互联网上每一个站点的标识符,采用十六进制数表示,共六个字节(48位)。其中,前三个字节是由IEEE的注册管理机构RA负责给