Go语言 几种常见的IO模型用法 和 netpoll与原生GoNet对比

2024-06-04 00:04

本文主要是介绍Go语言 几种常见的IO模型用法 和 netpoll与原生GoNet对比,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【go基础】16.I/O模型与网络轮询器netpoller_go中的多路io复用模型-CSDN博客

字节开源的netPoll多路复用器源码解析-CSDN博客

一、几种常见的IO模型

1. 阻塞I/O

(1) 解释:

    用户调用如accept、read等系统调用,向内核发起I/O请求后,应用程序会从用户态陷入内核态。

    内核会检查文件描述符fd是否就绪,如果没有数据准备就绪,内核就会挂起(阻塞)当前的线程

    当fd中数据就绪后,操作系统内核会将数据从内核空间拷贝到进程空间,并交回控制权。

(2) 缺点:

    一个goroutine同一时刻只能处理一个流,无法解决多个IO请求问题

2. 非阻塞I/O

(1) 解释:

    执行read和write 等I/O操作会立刻返回,然后应用程序不停轮询。读取时如果没有数据,会返回

EAGAIN或EWOULDBLOCK错误码。

(2) 缺点:

    占用cpu资源,不停做无用的轮询操作

3.  I/O多路复用模型

(1) 解释:

    一个进程/线程处理多个I/O,内核同时监视多个文件描述符,一旦某个描述符就绪,通知程序进行相应的读写操作;如果没有文件句柄就绪,就阻塞应用程序,交出CPU。

(2) 缺点:无,基本符合需求。

4. 三种IO模型对比

目前epoll是linux大规模并发网络应用程序的首选。

大部分高性能的网络服务器使用的I/O复用模型均是epoll,比如nginx、redis、memcached等。

二、几种常见的IO模型 使用方法 

     以下模型的 IO 操作都是 使用阻塞的机制。

1、多线程

(1) 解释:

    每accept到一个客户端后,都启动一个新的线程。存在多个线程。

(2) 优点: 简单。

(3) 缺点:

a. 占用内存资源,每个线程需要2M的栈空间;需要的线程很多,且频繁切换。

b. 长连接需要保持连接状态(心跳/健康检查),进一步占用资源。

2、单线程 + 多路IO复用

(1) 解释:

    一个线程 ,处理多个客户端。采用多路I/O复用机制(epoll) 监控多个fd的IO请求

    多个请求是依次执行的,fd1的请求完成了,才去处理fd2的请求。

(2) 优点: 只需要一个线程,节省资源。

(3) 缺点:同一时间只能处理一个客户端操作,会有排队延迟

3、单线程 + 多路IO复用 + 多线程处理业务

(1) 解释:

    把逻辑任务分离到另外的线程池。

    创建专门用于处理逻辑业务的线程池。

    当有客户端消息到达,主线程完成io读操作后,将后续逻辑业务放入线程池的一个线程中执行,主线程继续监控IO请求。当线程执行完逻辑业务之后,将结果消息返回主线程,主线再发送给客户端。

(2) 优点: 将业务放到线程处理,减轻排队延迟。

(3) 缺点:IO 读写数据时的并发能力依然是1

4、单线程(只监听) + 多路IO复用 + 多线程处理业务和IO读写

(1) 解释:

     在3的基础上,让线程池把 IO读写 和 业务 都处理了。

     主线程只负责用来创建fd,每个线程负责监听多个客户端读写操作,以及后续逻辑业务。

     使用例子: GO语言的 原生net 和 netpoll 采用的是这个模式。

(2) 优点: 

a. 可以监听更多的fd,提升io读写的并发能力

b. 充分利用多核CPU

(3) 缺点:同一个线程内的多个客户端,依然是排队的

三、Netpoll与原生GoNet对比

1. 触发方式

Go Net:使用 边缘触发。只有一个Epoll事件循环,高并发时压力大。但消息包很大时,需要内存少。

NetPoll:使用 水平触发。支持多个事件,高并发效果更好。但消息包很大时,需要更多的内存。

2. Goroutine数目

Go Net:一个Goroutine下只有一个连接。

NetPoll:一个Goroutine下有多个连接。

3. 是否支持共用buff池,少拷贝一次数据。

Go Net:不支持。

NetPoll:支持。管理一个Buffer池直接交给用户,少拷贝一次。

四、边缘触发和水平触发的区别

1. 水平触发(LT): 若就绪的事件一次没有处理完,就会将没有处理完的事件继续放回到就绪队列之中,下一次可继续触发事件。

    必须使用非阻塞模式。因为水平触发模式会将文件描述符一直读到返回 errno或EAGAIN,非阻塞模式下才会返回这个。 而阻塞模式下不会返回这个,所以会一直阻塞卡死。

2. 边缘触发(ET):就绪的事件只能处理一次,需要一次过把数据读完。

  若没有处理完,会在下次的其它事件就绪时再进行处理。

  而若以后再也没有就绪的事件,剩余的那部分数据也会丢失。

这篇关于Go语言 几种常见的IO模型用法 和 netpoll与原生GoNet对比的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1028489

相关文章

SpringBoot3.X 整合 MinIO 存储原生方案

《SpringBoot3.X整合MinIO存储原生方案》本文详细介绍了SpringBoot3.X整合MinIO的原生方案,从环境搭建到核心功能实现,涵盖了文件上传、下载、删除等常用操作,并补充了... 目录SpringBoot3.X整合MinIO存储原生方案:从环境搭建到实战开发一、前言:为什么选择MinI

全面掌握 SQL 中的 DATEDIFF函数及用法最佳实践

《全面掌握SQL中的DATEDIFF函数及用法最佳实践》本文解析DATEDIFF在不同数据库中的差异,强调其边界计算原理,探讨应用场景及陷阱,推荐根据需求选择TIMESTAMPDIFF或inte... 目录1. 核心概念:DATEDIFF 究竟在计算什么?2. 主流数据库中的 DATEDIFF 实现2.1

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

Java中的数组与集合基本用法详解

《Java中的数组与集合基本用法详解》本文介绍了Java数组和集合框架的基础知识,数组部分涵盖了一维、二维及多维数组的声明、初始化、访问与遍历方法,以及Arrays类的常用操作,对Java数组与集合相... 目录一、Java数组基础1.1 数组结构概述1.2 一维数组1.2.1 声明与初始化1.2.2 访问

Java 方法重载Overload常见误区及注意事项

《Java方法重载Overload常见误区及注意事项》Java方法重载允许同一类中同名方法通过参数类型、数量、顺序差异实现功能扩展,提升代码灵活性,核心条件为参数列表不同,不涉及返回类型、访问修饰符... 目录Java 方法重载(Overload)详解一、方法重载的核心条件二、构成方法重载的具体情况三、不构

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

go中的时间处理过程

《go中的时间处理过程》:本文主要介绍go中的时间处理过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1 获取当前时间2 获取当前时间戳3 获取当前时间的字符串格式4 相互转化4.1 时间戳转时间字符串 (int64 > string)4.2 时间字符串转时间

Go语言中make和new的区别及说明

《Go语言中make和new的区别及说明》:本文主要介绍Go语言中make和new的区别及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1 概述2 new 函数2.1 功能2.2 语法2.3 初始化案例3 make 函数3.1 功能3.2 语法3.3 初始化