详解布隆过滤器,实现分布式布隆过滤器

2024-06-03 19:52

本文主要是介绍详解布隆过滤器,实现分布式布隆过滤器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

什么是布隆过滤器?

原理

布隆过滤器是一种基于位数组(bit array)和多个哈希函数的数据结构。其核心原理是:

  1. 初始化一个长度为m的位数组,所有位初始化为0。
  2. 使用k个不同的哈希函数将元素映射到位数组中的k个位置。
  3. 当插入一个元素时,使用k个哈希函数计算该元素的k个哈希值,并将位数组中对应位置的值设为1。
  4. 当查询一个元素是否存在时,使用同样的k个哈希函数计算该元素的k个哈希值,并检查位数组中对应位置的值是否都为1。如果有一个位置的值为0,则该元素肯定不在集合中;如果所有位置的值都为1,则该元素可能在集合中。  

优点

  1. 空间效率高:布隆过滤器通过使用位数组和哈希函数,可以在相对较小的空间内表示一个大型集合。这使得它特别适合内存受限的应用场景。

  2. 插入和查询速度快:插入和查询操作都只需要O(k)的时间复杂度(k为哈希函数的数量),非常高效。哈希函数的计算和位数组的访问都可以在常数时间内完成。

  3. 无需存储实际元素:布隆过滤器只需要存储哈希值,并不需要存储实际的元素数据,因此它能有效地节省存储空间。

  4. 适用于分布式系统:布隆过滤器可以轻松地分布在多个节点上,通过分布式哈希算法进行管理,适用于大规模分布式系统。

  5. 扩展性好:一些扩展版本的布隆过滤器,如可扩展布隆过滤器(Scalable Bloom Filter),可以动态调整大小,适应不断增长的数据集。

缺点

  1. 存在误判率:布隆过滤器有一定的误判率,即可能会误判一个不在集合中的元素为存在。误判率取决于位数组的大小、哈希函数的数量和存储的元素数量。这是由于哈希冲突产生的。

  2. 无法删除元素:基本布隆过滤器不支持删除操作,因为无法确定一个位置上的1是由哪个元素设置的。虽然计数布隆过滤器(Counting Bloom Filter)可以支持删除操作,但代价是需要更多的空间。

  3. 初始化参数选择复杂:选择合适的位数组大小和哈希函数数量是一个复杂的问题。位数组太小或哈希函数数量太少会增加误判率,而位数组太大或哈希函数数量太多则会浪费空间和时间。

  4. 不适用于动态集:基本布隆过滤器在初始化时需要确定位数组的大小,这对于元素数量动态变化的场景并不友好。可扩展布隆过滤器虽然可以动态调整大小,但实现较为复杂。

  5. 不支持元素的完整存储和检索:布隆过滤器只能判断元素是否存在于集合中,无法存储和检索元素的实际内容。

应用场景

布隆过滤器在很多应用场景中都有广泛的应用:

  1. 缓存系统:在缓存系统中,布隆过滤器可以用来快速判断一个请求是否命中缓存,避免不必要的数据库查询,解决缓存穿透问题。

  2. 垃圾邮件过滤:邮件系统可以使用布隆过滤器来快速判断一封邮件是否是垃圾邮件。

  3. 网络爬虫:在网络爬虫中,布隆过滤器可以用来记录已经访问过的URL,避免重复抓取。

  4. 数据库去重:在大规模数据处理中,布隆过滤器可以用来快速判断一个记录是否已经存在,避免重复存储。

  5. 分布式系统:在分布式系统中,布隆过滤器可以用来快速判断一个数据是否存在于某个节点上,提高查询效率。

布隆过滤器的实现

常用的几种有单体项目下,使用Guava包下的BloomFilter,分布式下使用Redission的RBloomFilter,这些都是写好的布隆过滤器,接下来将基于redis和jedis实现一个手写的分布式布隆过滤器

分布式布隆过滤器的实现

分布式布隆过滤器在大规模分布式系统中应用广泛,它的实现主要涉及以下几个方面:

  1. 位数组的分布:将位数组分布在多个节点上,每个节点存储部分位数组。
  2. 哈希函数:使用多个哈希函数来保证均匀分布。
  3. 一致性哈希:用来管理节点和数据之间的映射关系,保证负载均衡和容错。

分布式哈希算法

一致性哈希是一种用于分布式系统的哈希算法,能够有效地应对节点动态加入和退出的情况。它通过将所有节点和数据哈希到一个环上来实现数据的分布。主要包含以下步骤:

  1. 哈希环:将整个哈希空间组织成一个环,环的大小通常是哈希函数的输出范围。
  2. 节点哈希:将每个节点通过哈希函数映射到环上的一个点。
  3. 数据哈希:将每个数据通过相同的哈希函数映射到环上的一个点。
  4. 数据存储:数据存储在顺时针方向遇到的第一个节点上。
  5. 节点变动处理
    • 节点加入:重新分配一部分数据给新节点。
    • 节点退出:将其数据重新分配给其他节点。

分布式布隆过滤器的实现

下面是用Java和Jedis实现的分布式布隆过滤器示例。我们使用一致性哈希来分配数据,并用Redis存储位数组。

1. 一致性哈希实现

import java.util.SortedMap;
import java.util.TreeMap;public class ConsistentHashing {private final SortedMap<Integer, String> circle = new TreeMap<>();private final int replicas;public ConsistentHashing(int replicas) {this.replicas = replicas;}public void addNode(String node) {for (int i = 0; i < replicas; i++) {circle.put((node + i).hashCode(), node);}}public void removeNode(String node) {for (int i = 0; i < replicas; i++) {circle.remove((node + i).hashCode());}}public String getNode(String key) {if (circle.isEmpty()) {return null;}int hash = key.hashCode();if (!circle.containsKey(hash)) {SortedMap<Integer, String> tailMap = circle.tailMap(hash);hash = tailMap.isEmpty() ? circle.firstKey() : tailMap.firstKey();}return circle.get(hash);}
}

2. 分布式布隆过滤器实现 

import redis.clients.jedis.Jedis;
import java.nio.charset.StandardCharsets;
import com.google.common.hash.Hashing;public class DistributedBloomFilter {private ConsistentHashing consistentHashing;private int size;private int numHashFunctions;public DistributedBloomFilter(int replicas, int size, int numHashFunctions) {this.consistentHashing = new ConsistentHashing(replicas);this.size = size;this.numHashFunctions = numHashFunctions;}public void addNode(String host, int port) {consistentHashing.addNode(host + ":" + port);}public void removeNode(String host, int port) {consistentHashing.removeNode(host + ":" + port);}private static int[] getHashes(String value, int numHashes, int maxSize) {int[] hashes = new int[numHashes];for (int i = 0; i < numHashes; i++) {hashes[i] = Math.abs(Hashing.murmur3_128(i).hashString(value, StandardCharsets.UTF_8).asInt() % maxSize);}return hashes;}private Jedis getJedisClient(String value) {// 使用一致性哈希算法找到合适的节点String node = consistentHashing.getNode(value);// 解析节点信息并创建Jedis客户端实例String[] parts = node.split(":");return new Jedis(parts[0], Integer.parseInt(parts[1]));}public void add(String value) {// 计算哈希值int[] hashes = getHashes(value, numHashFunctions, size);try (Jedis jedis = getJedisClient(value)) {// 设置位数组的对应位置for (int hash : hashes) {jedis.setbit("bloom_filter", hash, true);}}}public boolean contains(String value) {// 计算哈希值int[] hashes = getHashes(value, numHashFunctions, size);try (Jedis jedis = getJedisClient(value)) {// 查询位数组的对应位置for (int hash : hashes) {if (!jedis.getbit("bloom_filter", hash)) {return false;}}}return true;}public static void main(String[] args) {// 创建布隆过滤器实例DistributedBloomFilter bloomFilter = new DistributedBloomFilter(3, 1000, 5);// 添加Redis节点bloomFilter.addNode("localhost", 6379);bloomFilter.addNode("localhost", 6380);bloomFilter.addNode("localhost", 6381);// 插入元素bloomFilter.add("apple");bloomFilter.add("banana");// 查询元素System.out.println(bloomFilter.contains("apple"));  // 输出: trueSystem.out.println(bloomFilter.contains("banana")); // 输出: trueSystem.out.println(bloomFilter.contains("cherry")); // 输出: false}
}

这篇关于详解布隆过滤器,实现分布式布隆过滤器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1027951

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

详解C#如何提取PDF文档中的图片

《详解C#如何提取PDF文档中的图片》提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使用,下面我们就来看看如何使用C#通过代码从PDF文档中提取图片吧... 当 PDF 文件中包含有价值的图片,如艺术画作、设计素材、报告图表等,提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("