Pointnet学习以及对代码的实现

2024-06-03 16:28
文章标签 代码 实现 学习 pointnet

本文主要是介绍Pointnet学习以及对代码的实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

由于点云不是常规数据格式,通常将此类数据转换为规则的 3D 体素网格或图像集合,然后再用神经网络进行处理。数据表示转换使生成的数据过于庞大。

PointNet是第一个直接处理原始点云的方法。只有全连接层和最大池化层,PointNet网络在推理速度上具有强大的领先优势,并且可以很容易地在CPU上并行化。

应对点云的无序性有三种方案:

方案1:排序

高维空间的排序,不可稳定

方案2:假如有N个点,N!种排列训练一个RNN。

2015年《Order Matters: Sequence to sequence for sets》证明RNN网络对序列的排序还是有要求的。

方案3:设计对称函数,因为输入顺序对于对称函数没有影响。比如:加法、乘法

PointNet使用的最大池化,是对称函数。

分类网络以n个点为输入,应用输入和特征变换,然后通过最大池化聚合点特征。输出是 k 个类的分类分数。

Pointnet网络的搭建(tensorflow版):

class PointNet(Model):def __init__(self):super(PointNet, self).__init__()self.MLP64 = layers.Conv1D(filters=64, kernel_size=1, strides=1, padding="valid", activation="relu")self.MLP1024 = layers.Conv1D(filters=1024, kernel_size=1, strides=1, padding="valid", activation="relu")self.Dense10 = layers.Dense(10, activation="softmax")def call(self, inputs, training=None, mask=None):x = self.MLP64(inputs)#(Batch,1,1000,64)print(x.shape)x = self.MLP1024(x)#(Batch,1,1000,1024)print(x.shape)x = tf.reduce_max(x, axis=1)#(Batch,1,1024)print(x.shape)x = layers.Flatten()(x)x = self.Dense10(x)#(Batch,10)print(x.shape)return xmodel = PointNet()
input_shape = (1, 1000, 3)
model.build(input_shape)
model.summary()

这是我看pointnet论文后复现的分类网络,由于以前总是对图像进行2D卷积,这里对输入的理解还不深刻。采用了(B,H,W,C)的输入结构,因为是每个点有3个特征,所以将其处理为(B,1,W,C)的结构。但后期发现其比较复杂,所以改进了一下,使用(B,Len,C)的输入结构。

在深度学习中,处理点云数据(Point Cloud Data)或3D形状数据与传统的2D图像数据有所不同。

原始输入结构: (B, H, W, C)

  • B:代表批次大小(Batch Size),即一次输入到网络中的样本数量。
  • H 和 W:在2D图像中,它们分别代表图像的高度(Height)和宽度(Width)。但在处理点云数据时,由于点云本质上是一组无序的点集合,所以这里的 H 和 W 可能并不是直观意义上的“高度”和“宽度”。在某些情况下,它们可能被用来表示某种形式的网格化点云,但这并不是PointNet的初衷。
  • C:代表通道数(Channels),对于RGB图像来说,C=3(红、绿、蓝)。但在点云数据中,每个点可能有多个特征,比如三维坐标(x, y, z)以及其他属性(如颜色、密度等)。

转换为 (B, 1, W, C)

  • 将 H 设置为 1 可能是为了尝试将点云数据强制适配到更常见的4D张量结构(即 (B, H, W, C)),但这并不是处理点云数据的最佳方式。因为点云数据中的点是无序的,并且没有固定的网格结构。

改进后的输入结构: (B, Len, C)

  • B:仍然代表批次大小。
  • Len:代表每个样本中点的数量(Length of points)。这是处理点云数据的更自然的方式,因为它直接反映了点云数据的特点——即一组无序的点集合。
  • C:仍然代表每个点的特征通道数。

使用 (B, Len, C) 的输入结构可以更直接地处理点云数据,并且符合PointNet的设计初衷。

def Point_MLP(inputs, num_filters, use_bn=True, activation='relu'):x = layers.Conv1D(num_filters, kernel_size=1, activation=activation, padding='valid')(inputs)if use_bn:x = tf.keras.layers.BatchNormalization()(x)x = tf.keras.layers.Activation(activation)(x)return xdef Model_Point(point_num, feature_num, mode):inputs = layers.Input(shape=(point_num, feature_num))x64 = Point_MLP(inputs, 64) #(B,N,64)x512 = Point_MLP(x64, 512)x1024 = Point_MLP(x512, 1024) #(B,N,1024)gloable = tf.reduce_max(x1024, axis=1) #(None, 1024)if mode == "clc":x = layers.Flatten()(gloable)x = layers.Dense(10, activation="softmax")(x)model = Model(inputs=inputs, outputs=x)if mode == "seg":global_feature_tiled = tf.tile(tf.expand_dims(gloable, 1), [1, tf.shape(x512)[1], 1])concatenated_features = tf.concat([x512, global_feature_tiled], axis=2)#concatenated_features 的形状是 (batch_size, num_points, local_feature_dim + global_feature_dim)model = Model(inputs=inputs, outputs=concatenated_features)return modelPointNet = Model_Point(10000, 3, mode="clc")
PointNet.summary()

这篇关于Pointnet学习以及对代码的实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1027507

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja