本文主要是介绍TfLite: mcu代码分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
micro_framework和lite_framework的对比找到公共部分
cc_library(
name = "micro_framework",
srcs = [
"micro_error_reporter.cc",
"micro_interpreter.cc",
"micro_mutable_op_resolver.cc",
"simple_tensor_allocator.cc",
],
hdrs = [
"compatibility.h",
"micro_error_reporter.h",
"micro_interpreter.h",
"micro_mutable_op_resolver.h",
"simple_tensor_allocator.h",
],
deps = [
"//tensorflow/lite:schema_fbs_version",
"//tensorflow/lite/c:c_api_internal",
"//tensorflow/lite/core/api",
"//tensorflow/lite/schema:schema_fbs",
],
)
cc_library(
name = "framework",
srcs = [
"allocation.cc",
"graph_info.cc",
"interpreter.cc",
"model.cc",
"mutable_op_resolver.cc",
"optional_debug_tools.cc",
"stderr_reporter.cc",
] + select({
"//tensorflow:android": [
"nnapi_delegate.cc",
"mmap_allocation.cc",
],
"//tensorflow:windows": [
"nnapi_delegate_disabled.cc",
"mmap_allocation_disabled.cc",
],
"//conditions:default": [
"nnapi_delegate_disabled.cc",
"mmap_allocation.cc",
],
}),
hdrs = [
"allocation.h",
"context.h",
"context_util.h",
"error_reporter.h",
"graph_info.h",
"interpreter.h",
"model.h",
"mutable_op_resolver.h",
"nnapi_delegate.h",
"op_resolver.h",
"optional_debug_tools.h",
"stderr_reporter.h",
],
deps = [
":arena_planner",
":graph_info",
":memory_planner",
":schema_fbs_version",
":simple_memory_arena",
":string",
":util",
"//tensorflow/lite/c:c_api_internal",
"//tensorflow/lite/core/api",
"//tensorflow/lite/kernels:eigen_support",
"//tensorflow/lite/kernels:gemm_support",
"//tensorflow/lite/nnapi:nnapi_lib",
"//tensorflow/lite/profiling:profiler",
"//tensorflow/lite/schema:schema_fbs",
] + select({
":with_tflite_flex": [
"//tensorflow/lite/delegates/flex:delegate",
],
"//conditions:default": [],
}),
)
TfLite for mcu和TfLite reference之间的关系
1. tflite for mcu是和tflite是两个不同的 reference framework
2. tflite for mcu 相比tflire的framework 简单的多
3. 两者都依赖
"//tensorflow/lite/core/api" and "//tensorflow/lite/c:c_api_internal"
//tensorflow/lite/core/api
core/api提供的3个抽象接口类:error_report, op_resolver and BuiltinDataAllocator和使用这些类的接口
其中文件名flatbuffer_conversions.h和BuiltinDataAllocator类名有点歧义,BuiltinDataAllocator为保存从flatbuffer中得到 BuilitinData提供分配memory的方法。
具体的interpreter如TfLite 或者TfLite for mcu都有实现这三个基类的接口,这也许为什么叫core/api的原因
error_reporter.h
// A functor that reports error to supporting system. Invoked similar to
// printf.
// Subclass ErrorReporter to provide another reporting destination.
// For example, if you have a GUI program, you might redirect to a buffer
// that drives a GUI error log box.
class ErrorReporter {
public:
virtual ~ErrorReporter() {}
virtual int Report(const char* format, va_list args) = 0;
int Report(const char* format, ...);
int ReportError(void*, const char* format, ...);
};
op_resolver.h
namespace tflite {
// Abstract interface that returns TfLiteRegistrations given op codes or custom
// op names. This is the mechanism that ops being referenced in the flatbuffer
// model are mapped to executable function pointers (TfLiteRegistrations).
class OpResolver {
public:
// Finds the op registration for a builtin operator by enum code.
virtual const TfLiteRegistration* FindOp(tflite::BuiltinOperator op,
int version) const = 0;
// Finds the op registration of a custom operator by op name.
virtual const TfLiteRegistration* FindOp(const char* op,
int version) const = 0;
virtual ~OpResolver() {}
};
// Handles the logic for converting between an OperatorCode structure extracted
// from a flatbuffer and information about a registered operator implementation.
TfLiteStatus GetRegistrationFromOpCode(const OperatorCode* opcode,
const OpResolver& op_resolver,
ErrorReporter* error_reporter,
const TfLiteRegistration** registration);
} // namespace tflite
flatbuffer_conversions.h
// These functions transform codes and data structures that are defined in the
// flatbuffer serialization format into in-memory values that are used by the
// runtime API and interpreter.
// Interface class for builtin data allocations.
class BuiltinDataAllocator {
public:
virtual void* Allocate(size_t size) = 0;
virtual void Deallocate(void* data) = 0;
// Allocate a structure, but make sure it is a POD structure that doesn't
// require constructors to run. The reason we do this, is that Interpreter's C
// extension part will take ownership so destructors will not be run during
// deallocation.
template <typename T>
T* AllocatePOD() {
static_assert(std::is_pod<T>::value, "Builtin data structure must be POD.");
return static_cast<T*>(this->Allocate(sizeof(T)));
}
virtual ~BuiltinDataAllocator() {}
};
// Parse the appropriate data out of the op.
// 如 卷积网络的stride_width、stride_height等
// This handles builtin data explicitly as there are flatbuffer schemas.
// If it returns kTfLiteOk, it passes the data out with `builtin_data`. The
// calling function has to pass in an allocator object, and this allocator
// will be called to reserve space for the output data. If the calling
// function's allocator reserves memory on the heap, then it's the calling
// function's responsibility to free it.
// If it returns kTfLiteError, `builtin_data` will be `nullptr`.
TfLiteStatus ParseOpData(const Operator* op, BuiltinOperator op_type,
ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator, void** builtin_data);
// Converts the tensor data type used in the flat buffer to the representation
// used by the runtime.
TfLiteStatus ConvertTensorType(TensorType tensor_type, TfLiteType* type,
ErrorReporter* error_reporter);
// Parse the appropriate data out of the op.
//
// This handles builtin data explicitly as there are flatbuffer schemas.
// If it returns kTfLiteOk, it passes the data out with `builtin_data`, which
// need to be released by calling `free`.`
// If it returns kTfLiteError, `builtin_data` will be `nullptr`.
// 从flatbuffer格式的模型文件中parse出数据到 builtin_data
// 该函数是个框架,依赖接口类的实现 BuiltinDataAllocator
TfLiteStatus ParseOpData(const Operator* op, BuiltinOperator op_type,
ErrorReporter* error_reporter,
BuiltinDataAllocator* allocator, void** builtin_data) {
*builtin_data = nullptr;
switch (op_type) {
case BuiltinOperator_CONV_2D: {
TfLiteConvParams* params = allocator->AllocatePOD<TfLiteConvParams>();
if (auto* conv_params = op->builtin_options_as_Conv2DOptions()) {
params->padding = parse_padding(conv_params->padding());
params->stride_width = conv_params->stride_w();
params->stride_height = conv_params->stride_h();
params->activation =
parse_activation(conv_params->fused_activation_function());
params->dilation_width_factor = conv_params->dilation_w_factor();
params->dilation_height_factor = conv_params->dilation_h_factor();
}
*builtin_data = reinterpret_cast<void*>(params);
break;
}
}
//tensorflow/lite/c:c_api_internal
cc_library(
name = "c_api_internal",
srcs = ["c_api_internal.c"],
hdrs = [
"builtin_op_data.h",
"c_api_internal.h",
],
visibility = [
"//tensorflow/contrib/lite:__subpackages__",
"//tensorflow/lite:__subpackages__",
],
)
c_api_internal.h
#ifdef __cplusplus
extern "C" {
#endif // __cplusplus
#ifdef __cplusplus
} // extern "C"
#endif // __cplusplus
1]
c_api_internal.h 定义了tflite的主要数据结构
// This file defines a C API for implementing operations in tflite.
// These operations can be defined using c++ but the interface between
// the interpreter and the operations are C.
//
// Summary of abstractions
// TF_LITE_ENSURE - Self-sufficient error checking
// TfLiteStatus - Status reporting
// TfLiteIntArray - stores tensor shapes (dims),
// TfLiteContext - allows an op to access the tensors
// TfLiteTensor - tensor (a multidimensional array)
// TfLiteNode - a single node or operation
// TfLiteRegistration - the implementation of a conceptual operation.
//
// Some abstractions in this file are created and managed by Interpreter.
// Parameters for asymmetric quantization. Quantized values can be converted
// back to float using:
// real_value = scale * (quantized_value - zero_point);
typedef struct {
float scale;
int32_t zero_point;
} TfLiteQuantizationParams;
c/c_api_internal.c
#ifndef TF_LITE_STATIC_MEMORY
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#endif // TF_LITE_STATIC_MEMORY
micro到底定义这个宏没?可不可以使用 malloc 是的 TF_LITE_STATIC_MEMORY关注下这个macro
builtin_op_data.h : op's builtin data
schema_fbs
# Generic schema for inference on device.
flatbuffer_cc_library(
name = "schema_fbs",
srcs = ["schema.fbs"],
)
schema_fbs_version
cc_library(
name = "schema_fbs_version",
hdrs = ["version.h"],
)
#define TFLITE_SCHEMA_VERSION (3)
TfLite for mcu 的core/api的实现
1] class MicroMutableOpResolver : public OpResolver
//增加了成员函数AddBuiltin and AddCustom和私有成员变量TfLiteRegistration数组和长度
class MicroMutableOpResolver : public OpResolver {
public:
const TfLiteRegistration* FindOp(tflite::BuiltinOperator op,
int version) const override;
const TfLiteRegistration* FindOp(const char* op, int version) const override;
void AddBuiltin(tflite::BuiltinOperator op, TfLiteRegistration* registration,
int min_version = 1, int max_version = 1);
void AddCustom(const char* name, TfLiteRegistration* registration,
int min_version = 1, int max_version = 1);
private:
TfLiteRegistration registrations_[TFLITE_REGISTRATIONS_MAX];
int registrations_len_ = 0;
TF_LITE_REMOVE_VIRTUAL_DELETE
};
Add/Find函数的实现比较简单,就是对数组TfLiteRegistration registrations_的操作
void MicroMutableOpResolver::AddBuiltin(tflite::BuiltinOperator op,
TfLiteRegistration* registration,
int min_version, int max_version) {
for (int version = min_version; version <= max_version; ++version) {
if (registrations_len_ >= TFLITE_REGISTRATIONS_MAX) {
// TODO(petewarden) - Add error reporting hooks so we can report this!
return;
}
TfLiteRegistration* new_registration = ®istrations_[registrations_len_];
registrations_len_ += 1;
*new_registration = *registration;
new_registration->builtin_code = op;
new_registration->version = version;
}
}
2] micro_interpreter.cc class StackDataAllocator public BuiltinDataAllocator
//StackDataAllocator就是返回静态数组的首地址,用于保存从flatbuffer中得到的builtin data
const int kStackDataAllocatorSize = 128;
class StackDataAllocator : public BuiltinDataAllocator {
public:
void* Allocate(size_t size) override {
if (size > kStackDataAllocatorSize) {
return nullptr;
} else {
return data_;
}
}
void Deallocate(void* data) override {
// Do nothing.
}
private:
uint8_t data_[kStackDataAllocatorSize];
TF_LITE_REMOVE_VIRTUAL_DELETE
};
class SimpleTensorAllocator
class SimpleTensorAllocator 是另一个分配memory的class和BuiltinDataAllocator并列
// This allocator never frees up or reuses any memory, even
// though we have enough information about lifetimes of the tensors to do so.
// This makes it pretty wasteful, so we should use a more intelligent method.
class SimpleTensorAllocator {
public:
SimpleTensorAllocator(uint8_t* buffer, int buffer_size)
: data_size_(0), data_size_max_(buffer_size), data_(buffer) {}
TfLiteStatus AllocateTensor(
const tflite::Tensor& flatbuffer_tensor, int create_before,
int destroy_after,
const flatbuffers::Vector<flatbuffers::Offset<Buffer>>* buffers,
ErrorReporter* error_reporter, TfLiteTensor* result);
uint8_t* AllocateMemory(size_t size, size_t alignment);
int GetDataSize() const { return data_size_; }
private:
int data_size_;
int data_size_max_;
uint8_t* data_;
};
1] 构造函数提供了SimpleTensorAllocator(uint8_t* buffer, int buffer_size)memory的开始地址和大小
2] uint8_t* AllocateMemory(size_t size, size_t alignment);用于分配出一块内存并返回开始地址
3] AllocateTensor分配内存并赋值,从flatbuffer中取出,写入这里分配的 内存
AllocateTensor
TfLiteStatus SimpleTensorAllocator::AllocateTensor(
const tflite::Tensor& flatbuffer_tensor, int create_before,
int destroy_after,
const flatbuffers::Vector<flatbuffers::Offset<Buffer>>* buffers,
ErrorReporter* error_reporter, TfLiteTensor* result) {
//tflite::Tensor(来着模型文件) 转换成TfLiteTensor
//1.flatbuffer tensor type -> TfLiteTensor type
TF_LITE_ENSURE_STATUS(ConvertTensorType(flatbuffer_tensor.type(),
&result->type, error_reporter));
//2.flatbuffer tensor is_variable
result->is_variable = flatbuffer_tensor.is_variable();
result->data.raw = nullptr;
result->bytes = 0;
//3.flatbuffer tensor bufers(index) []
if (auto* buffer = (*buffers)[flatbuffer_tensor.buffer()]) {
//3.1 get the tensor data and size
if (auto* array = buffer->data()) {
if (size_t array_size = array->size()) {
result->data.raw =
const_cast<char*>(reinterpret_cast<const char*>(array->data()));
size_t type_size;
TF_LITE_ENSURE_STATUS(BytesRequired(flatbuffer_tensor, array_size,
&result->bytes, &type_size,
error_reporter));
}
}
}
if (result->data.raw) {//TfLite type
result->allocation_type = kTfLiteMmapRo;
} else {
int data_size = 1;
//4.0 shape size
for (int n = 0; n < flatbuffer_tensor.shape()->Length(); ++n) {
data_size *= flatbuffer_tensor.shape()->Get(n);
}
size_t type_size;
//4.1 type size
TF_LITE_ENSURE_STATUS(BytesRequired(flatbuffer_tensor, data_size,
&result->bytes, &type_size,
error_reporter));
//4.2 Allocate memory: based on shape and tpye
result->data.raw =
reinterpret_cast<char*>(AllocateMemory(result->bytes, type_size));
if (result->data.raw == nullptr) {
const char* tensor_name = flatbuffer_tensor.name()->c_str();
if (tensor_name == nullptr) {
tensor_name = "<None>";
}
error_reporter->Report(
"Couldn't allocate memory for tensor '%s', wanted %d bytes but only "
"%d were available",
tensor_name, result->bytes, (data_size_max_ - data_size_));
return kTfLiteError;
}
result->allocation_type = kTfLiteArenaRw;
}
//4.3 store tensorshape
result->dims = reinterpret_cast<TfLiteIntArray*>(AllocateMemory(
sizeof(int) * (flatbuffer_tensor.shape()->Length() + 1), sizeof(int)));
result->dims->size = flatbuffer_tensor.shape()->Length();
for (int n = 0; n < flatbuffer_tensor.shape()->Length(); ++n) {
result->dims->data[n] = flatbuffer_tensor.shape()->Get(n);
}
//4.4 tensor quantization
if (flatbuffer_tensor.quantization()) {
result->params.scale = flatbuffer_tensor.quantization()->scale()->Get(0);
result->params.zero_point =
flatbuffer_tensor.quantization()->zero_point()->Get(0);
}
result->allocation = nullptr;
//4.5 tensor name
if (flatbuffer_tensor.name()) {
result->name = flatbuffer_tensor.name()->c_str();
} else {
result->name = "<No name>";
}
result->delegate = nullptr;
result->buffer_handle = 0;
result->data_is_stale = false;
return kTfLiteOk;
}
TfLiteIntArray的内存分配
#ifndef TF_LITE_STATIC_MEMORY
TfLiteIntArray* TfLiteIntArrayCreate(int size) {
TfLiteIntArray* ret =
(TfLiteIntArray*)malloc(TfLiteIntArrayGetSizeInBytes(size));
ret->size = size;
return ret;
}
#endif
而在mcu中,就是原来是malloc的都用simple_tensor_allocator的AllocateMemory实现
reinterpret_cast<TfLiteIntArray*>(AllocateMemory(
sizeof(int) * (flatbuffer_tensor.shape()->Length() + 1), sizeof(int)));
如果没有quantization,都会crash吗?
//另外,遇到的问题是没有quantization的模型文件但是flatbuffer_tensor.quantization()非空
//但后面的访问无效导致crash
if (flatbuffer_tensor.quantization()) { //没有 quantization这里的值为什么是true?
result->params.scale = flatbuffer_tensor.quantization()->scale()->Get(0);
result->params.zero_point = flatbuffer_tensor.quantization()->zero_point()->Get(0);
}
micro_interpreter.cc
class MicroInterpreter
class MicroInterpreter {
public:
MicroInterpreter(const Model* model, const OpResolver& op_resolver,
SimpleTensorAllocator* tensor_allocator,
ErrorReporter* error_reporter);
TfLiteStatus Invoke();
size_t tensors_size() const { return context_.tensors_size; }
TfLiteTensor* tensor(int tensor_index);
TfLiteTensor* input(int index);
size_t inputs_size() const { return subgraph_->inputs()->Length(); }
TfLiteTensor* output(int index);
size_t outputs_size() const { return subgraph_->outputs()->Length(); }
TfLiteStatus initialization_status() const { return initialization_status_; }
ErrorReporter* error_reporter() { return error_reporter_; }
private:
const Model* model_;
const OpResolver& op_resolver_;
SimpleTensorAllocator* tensor_allocator_;
ErrorReporter* error_reporter_;
TfLiteStatus initialization_status_;
const flatbuffers::Vector<flatbuffers::Offset<Tensor>>* tensors_;
const flatbuffers::Vector<flatbuffers::Offset<Operator>>* operators_;
TfLiteContext context_;
const SubGraph* subgraph_;
};
构造函数从模型文件中获得数据 赋值到 TfLite环境
MicroInterpreter::MicroInterpreter(const Model* model,
const OpResolver& op_resolver,
SimpleTensorAllocator* tensor_allocator,
ErrorReporter* error_reporter)
: model_(model),
op_resolver_(op_resolver),
tensor_allocator_(tensor_allocator),
error_reporter_(error_reporter),
initialization_status_(kTfLiteOk) {
//1] get data from flatbuffers
const flatbuffers::Vector<flatbuffers::Offset<Buffer>>* buffers =
model->buffers();
auto* subgraphs = model->subgraphs();
if (subgraphs->size() != 1) {
error_reporter->Report("Only 1 subgraph is currently supported.\n");
initialization_status_ = kTfLiteError;
return;
}
subgraph_ = (*subgraphs)[0];
tensors_ = subgraph_->tensors();
operators_ = subgraph_->operators();
---
}
Invoke 推断函数
TfLiteStatus MicroInterpreter::Invoke() {
//1. get operator codes from flatbuffers
auto opcodes = model_->operator_codes();
for (int i = 0; i < operators_->Length(); ++i) {
const auto* op = operators_->Get(i);
int index = op->opcode_index();
auto opcode = (*opcodes)[index];
const TfLiteRegistration* registration = nullptr;
//2.1 get registration based on opcode
status = GetRegistrationFromOpCode(opcode, op_resolver_, error_reporter_,
®istration);
//2.2 from registration getting BuiltinOperator
BuiltinOperator op_type =
static_cast<BuiltinOperator>(registration->builtin_code);
//2.3 get init_data
StackDataAllocator stack_data_allocator;
unsigned char* builtin_data = nullptr;
{// get builtin_ops data
TF_LITE_ENSURE_STATUS(ParseOpData(op, op_type, error_reporter_,
&stack_data_allocator,
(void**)(&builtin_data)));
}
//2.4 call registration init function and return user data
void* user_data = nullptr;
if (registration->init) {
user_data = registration->init(&context_, init_data, init_data_size);
}
//2.5 op's inputs array: TfLiteIntArray :node的输入
const int kMaxInputs = 16;
int inputs_data[kMaxInputs + 1];
TfLiteIntArray* inputs_array =
reinterpret_cast<TfLiteIntArray*>(inputs_data);
inputs_array->size = op->inputs()->Length();
for (int n = 0; n < op->inputs()->Length(); ++n) {
inputs_array->data[n] = op->inputs()->Get(n);
}
//2.6 op's onputs array: TfLiteIntArray: node的输出
const int kMaxOutputs = 16;
int outputs_data[kMaxOutputs + 1];
TfLiteIntArray* outputs_array =
reinterpret_cast<TfLiteIntArray*>(outputs_data);
outputs_array->size = op->outputs()->Length();
for (int n = 0; n < op->outputs()->Length(); ++n) {
outputs_array->data[n] = op->outputs()->Get(n);
}
//2.7 op's temp array: TfLiteIntArray node的临时使用array
const int kMaxTemporaries = 16;
int temporaries_data[kMaxTemporaries + 1];
TfLiteIntArray* temporaries_array =
reinterpret_cast<TfLiteIntArray*>(temporaries_data);
temporaries_array->size = 0;
//2.8
//2.8.1 上面所做的一切都是为了这里,value: TfLiteNode
TfLiteNode node;
node.inputs = inputs_array;
node.outputs = outputs_array;
node.temporaries = temporaries_array;
node.user_data = user_data;
node.builtin_data = reinterpret_cast<void*>(builtin_data);
node.custom_initial_data = custom_data;
node.custom_initial_data_size = custom_data_size;
node.delegate = nullptr;
//2.8.2 prepare, invoke and free
if (registration->prepare) {
TfLiteStatus prepare_status = registration->prepare(&context_, &node);
}
if (registration->invoke) {
TfLiteStatus invoke_status = registration->invoke(&context_, &node);
}
if (registration->free) {
registration->free(&context_, user_data);
}
}
}
micro上实现的ops
cc_library(
name = "all_ops_resolver", //对外的接口,具体实现是依赖: micro_ops
srcs = [
"all_ops_resolver.cc",
],
hdrs = [
"all_ops_resolver.h",
],
copts = tflite_copts(),
deps = [
":micro_ops",
"//tensorflow/lite/c:c_api_internal",
"//tensorflow/lite/experimental/micro:micro_framework",
],
)
class AllOpsResolver : public MicroMutableOpResolver
class AllOpsResolver : public MicroMutableOpResolver {
public:
AllOpsResolver();
private:
TF_LITE_REMOVE_VIRTUAL_DELETE
};
all_ops_resolver.cc
TfLiteRegistration* Register_SOFTMAX(); //没有包含对应头文件声明函数,这里直接声明为外部函数
TfLiteRegistration* Micro_Register_SOFTMAX() { return Register_SOFTMAX(); }
AllOpsResolver::AllOpsResolver() {//在构造函数中调用基类函数
AddBuiltin(BuiltinOperator_DEPTHWISE_CONV_2D, Micro_Register_DEPTHWISE_CONV_2D());
AddBuiltin(BuiltinOperator_FULLY_CONNECTED, Micro_Register_FULLY_CONNECTED(),
/* min_version */ 1,
/* max_version */ 2);
AddBuiltin(BuiltinOperator_SOFTMAX, Micro_Register_SOFTMAX());
}
Register_SOFTMAX的具体实现
每个op都会返回标准的 TfLiteRegistration
softmax.cc
{
} // namespace activations
TfLiteRegistration* Register_SOFTMAX() {
static TfLiteRegistration r = {activations::Init, activations::Free,
activations::SoftmaxPrepare,
activations::SoftmaxEval};
return &r;
}
mico ops的实现
cc_library(
name = "micro_ops",
srcs = [
"depthwise_conv.cc",
"fully_connected.cc",
"softmax.cc",
],
hdrs = [
],
copts = tflite_copts(),
deps = [
"//tensorflow/lite/c:c_api_internal",
"//tensorflow/lite/experimental/micro:micro_framework",
"//tensorflow/lite/kernels:kernel_util",
"//tensorflow/lite/kernels:op_macros",
"//tensorflow/lite/kernels:padding",
"//tensorflow/lite/kernels/internal:quantization_util",
"//tensorflow/lite/kernels/internal:reference_base",
"//tensorflow/lite/kernels/internal:tensor",
],
)
对tfltie kernel的依赖
1. kernel_util
cc_library(
name = "kernel_util",
srcs = [
"kernel_util.cc",
],
hdrs = [
"kernel_util.h",
],
deps = [
"//tensorflow/lite/c:c_api_internal",
"//tensorflow/lite/kernels/internal:round",
"//tensorflow/lite/kernels/internal:types",
],
)
kernel_util: 基本操作如: getInput/Output of TfLiteNode
2. op_macros
cc_library(
name = "op_macros",
hdrs = [
"op_macros.h",
],
)
// If we're on a platform without standard IO functions, fall back to a
// non-portable function.
#ifdef TF_LITE_MCU_DEBUG_LOG
#include "tensorflow/lite/experimental/micro/micro_error_reporter.h"
#define DEBUG_LOG(x) \
do { \
DebugLog(x); \
} while (0)
inline void InfiniteLoop() {
DEBUG_LOG("HALTED\n");
while (1) {
}
}
#define TFLITE_ASSERT_FALSE InfiniteLoop();
#define TFLITE_ABORT InfiniteLoop();
#else // TF_LITE_MCU_DEBUG_LOG
#endif
3. padding
cc_library(
name = "padding",
srcs = [],
hdrs = ["padding.h"],
deps = [
"//tensorflow/lite/c:c_api_internal",
],
)
4. internal:tensor
cc_library(
name = "tensor",
hdrs = [
"tensor.h",
"tensor_ctypes.h",
],
deps = [
":types",
"//tensorflow/lite/c:c_api_internal",
],
)
5.
cc_library(
name = "reference_base",
srcs = [],
hdrs = [
"common.h",
"reference/depthwiseconv_float.h",
"reference/depthwiseconv_uint8.h",
"reference/fully_connected.h",
"reference/reference_ops.h",
"reference/softmax.h",
],
deps = [
":quantization_util",
":round",
":strided_slice_logic",
":types",
"@gemmlowp",
"//tensorflow/lite/c:c_api_internal",
"//tensorflow/lite/kernels:op_macros",
] + select({
":x86_64": tflite_deps_intel,
"//conditions:default": [],
}),
)
6.
cc_library(
name = "quantization_util",
srcs = ["quantization_util.cc"],
hdrs = [
"compatibility.h",
"quantization_util.h",
],
deps = [
":round",
":types",
"//tensorflow/lite/kernels:op_macros",
],
)
TfLite for mcu 和TfLite的op的实现哪里不同
这篇关于TfLite: mcu代码分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!