TFLite:使用1维CNN处理序列数据的过程

2024-06-03 14:58

本文主要是介绍TFLite:使用1维CNN处理序列数据的过程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

开发环境

tf.__version__
'2.0.0-beta1'

tf.keras.__version__
'2.2.4-tf'

数据来源

http://www.cis.fordham.edu/wisdm/dataset.php

根据sensor数据x, y, z分类出Downstairs, Upstairs, jogging, sitting, standing, walking 6个类别

数据预处理函数

import pandas as pd
import numpy as np

import matplotlib.pyplot as plt
from scipy import stats
from sklearn import metrics
from sklearn.metrics import classification_report
from sklearn import preprocessing

import keras
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Flatten, Reshape, GlobalAveragePooling1D
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Conv1D, MaxPooling1D


columns = ['user','activity','timestamp', 'x-axis', 'y-axis', 'z-axis']
def read_data(file_patch):
    train = pd.read_csv(file_patch, header = None, names = columns)
    train = train.dropna()
    return train

# mean and std
def feature_normalize(feature):
    mu = np.mean(feature, axis=0)
    sigma = np.std(feature, axis=0)
    return (feature - mu) / sigma

# x1,y1,z1, x2, y2, z2
def create_segments_for_rnn(df, step, time_steps=200):
    X_train = []
    Y_train = []
    hot_test = []
    for i in range(0, df.shape[0] - time_steps, step):
        xyz_data = df[['x-axis', 'y-axis', 'z-axis']][i:i+time_steps]
        X_train.append(np.array(xyz_data))

        label = stats.mode(df['activity'][i: i + time_steps])[0][0]
        hot_test.append(label)
    #怎样找到 one-hot和字符串的对应关系?
    Y_train = np.asarray(pd.get_dummies(hot_test), dtype = np.float32)
    return np.array(X_train), Y_train

# x1, x2, x3, -----, x(timesteps), y1,...z1,...
def create_segments_for_cnn(df, step, time_steps=200):
    X_train = []
    Y_train = []
    hot_test = []
    for i in range(0, df.shape[0] - time_steps, step):
        xs = df['x-axis'].values[i: i + time_steps]
        ys = df['y-axis'].values[i: i + time_steps]
        zs = df['z-axis'].values[i: i + time_steps]
        X_train.append([xs, ys, zs])

        label = stats.mode(df['activity'][i: i + time_steps])[0][0]
        hot_test.append(label)

    reshaped_segments = np.asarray(X_train, dtype= np.float32).reshape(-1, time_steps, 3)
    #怎样找到 one-hot和字符串的对应关系?
    Y_train = np.asarray(pd.get_dummies(hot_test), dtype = np.float32)
    return reshaped_segments, Y_train

def shuffle_data(X, Y):
    np.random.seed(10)
    randomList = np.arange(X.shape[0])
    np.random.shuffle(randomList)
    return X[randomList], Y[randomList]

def split_data(X,Y,rate):
  X_train = X[int(X.shape[0]*rate):]
  Y_train = Y[int(Y.shape[0]*rate):]
  X_val = X[:int(X.shape[0]*rate)]
  Y_val = Y[:int(Y.shape[0]*rate)]
  return X_train, Y_train, X_val, Y_val

网络模型

rnn-lstm

参数的意义:64:lstm隐藏单元,input_length:time sequence length, input_dim: input feature number

return_sequences:多对多 还是多对一

def build_rnn_model(shape, num_classes):
  model = Sequential()
  model.add(LSTM(64, input_length = shape[1], input_dim = shape[2], return_sequences = True ))
  model.add(LSTM(64, return_sequences = False))
  model.add(Dense(num_classes, activation='softmax'))
  print(model.summary())
  model.compile(loss='categorical_crossentropy',
                optimizer='adam', metrics=['accuracy'])
  return model

cnn

参数的意义:30:提取多少个feature, 10: kenerl size, filter, input_shape:filter要扫描的形状

def build_cnn_model(shape, num_classes):
  model = Sequential()
  model.add(Conv1D(30, 10, activation='relu', input_shape=(shape[1], shape[2])))
  model.add(Conv1D(30, 10, activation='relu'))
  model.add(MaxPooling1D(3))
  model.add(Conv1D(48, 10, activation='relu'))
  model.add(Conv1D(48, 10, activation='relu'))
  model.add(GlobalAveragePooling1D())
  model.add(Dropout(0.5))
  model.add(Dense(num_classes, activation='softmax'))
  print(model.summary())
  model.compile(loss='categorical_crossentropy',
                optimizer='adam', metrics=['accuracy'])
  return model

这里理解下什么是1D cnn, 什么是2D cnn?

https://juejin.im/post/5beb7432f265da61524cf27c

[译] 在 Keras 中使用一维卷积神经网络处理时间序列数据

对应的参考代码

https://github.com/ni79ls/har-keras-cnn/blob/master/20180903_Keras_HAR_WISDM_CNN_v1.0_for_medium.py

无论是一维、二维还是三维,卷积神经网络(CNNs)都具有相同的特点和相同的处理方法。关键区别在于输入数据的维数以及特征检测器(或滤波器)如何在数据之间滑动

 模型training

df = read_data("WISDM_ar_v1.1_raw.txt")
df['x-axis'] = feature_normalize(df['x-axis'])
df['y-axis'] = feature_normalize(df['y-axis'])
df['z-axis'] = feature_normalize(df['z-axis'])
df.head()

#_x, _y = create_segments_for_cnn(df, 40, 80)
_x, _y = create_segments_for_rnn(df, 40, 80)
_xs, _ys = shuffle_data(_x, _y)

x_train, y_train, x_test, y_test = split_data(_xs, _ys, 0.1)
model = build_cnn_model(x_train.shape, 6)

callbacks_list = [
    keras.callbacks.ModelCheckpoint(
        filepath='callback_test.h5',
    ),
    #keras.callbacks.tensorboard(log_dir='my_log_dir', histogram_freq=1,)
]

# Hyper-parameters
BATCH_SIZE = 400
EPOCHS = 30

# Enable validation to use ModelCheckpoint and EarlyStopping callbacks.
history = model.fit(x_train,
                      y_train,
                      batch_size=BATCH_SIZE,
                      epochs=EPOCHS,
                      validation_split=0.2,
                      #callbacks=callbacks_list,not supported now
                      verbose=1)

数据处理方式的选择

不同数据格式训练出的效果不同
_x, _y = create_segments_for_rnn(df, 40, 80) 较好但生成训练数据慢

_x, _y = create_segments_for_cnn(df, 40, 80) 相对较差,但生成训练数据快

 有关callbacks 和tensorboard

当前tf.keras的版本对callbacks支持的不好,实测只有保存h5文件好用, 要使用keras,callbacks

callbacks_list = [
    keras.callbacks.ModelCheckpoint(
        filepath='lstm_model.h5',
    ),
    keras.callbacks.TensorBoard(
        log_dir='my_log_dir',
        histogram_freq=1,
    )
]

图形化表示训练效果

从网上找到一些方法,但报找不到xxx, 只要用history.history.keys()找到对应的字段就可以了

In [54]: history.history.keys()
Out[54]: ['loss', 'val_accuracy', 'val_loss', 'accuracy']

print("\n--- Learning curve of model training ---\n")

# summarize history for accuracy and loss
plt.figure(figsize=(6, 4))
plt.plot(history.history['accuracy'], "g--", label="Accuracy of training data")
plt.plot(history.history['val_accuracy'], "g", label="Accuracy of validation data")
plt.plot(history.history['loss'], "r--", label="Loss of training data")
plt.plot(history.history['val_loss'], "r", label="Loss of validation data")
plt.title('Model Accuracy and Loss')
plt.ylabel('Accuracy and Loss')
plt.xlabel('Training Epoch')
plt.ylim(0)
plt.legend()
plt.show()

测试数据上的效果

score = model.evaluate(x_test, y_test, verbose=1)

保存h5格式model文件

model.save('0710_cnn.h5')

h5转换为tflite格式文件

使用tflite_convert (推荐)


usage: tflite_convert [-h] --output_file OUTPUT_FILE
                      (--saved_model_dir SAVED_MODEL_DIR | --keras_model_file KERAS_MODEL_FILE)

tf.lite.TFLiteConverter.from_keras_model(model)

model = keras.models.load_model('path_to_my_model.h5')

converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()
open("converted_model.tflite", "wb").write(tflite_model)
 

tflite 模型文件在手机上的使用

修改编译 minimal

bazel build --cxxopt='--std=c++11' //tensorflow/lite/examples/minimal:minimal \
--crosstool_top=//external:android/crosstool \
--host_crosstool_top=@bazel_tools//tools/cpp:toolchain \
--cpu=arm64-v8a

tflite::PrintInterpreterState(interpreter.get());

会打印出这个model的结构如:

Interpreter has 41 tensors and 12 nodes

inputs/outputs


Inputs: 1
Outputs: 0

tensor

Tensor   0 Identity             kTfLiteFloat32  kTfLiteArenaRw         24 bytes ( 0.0 MB)  1 6
Tensor   1 conv1d_input         kTfLiteFloat32  kTfLiteArenaRw        960 bytes ( 0.0 MB)  1 80 3
Tensor   2 sequential/conv1d/Relu kTfLiteFloat32  kTfLiteArenaRw       8520 bytes ( 0.0 MB)  1 1 71 30
Tensor   3 sequential/conv1d/conv1d/ExpandDims kTfLiteFloat32  kTfLiteArenaRw        960 bytes ( 0.0 MB)  1 1 80 3
Tensor   4 sequential/conv1d/conv1d/ExpandDims/dim_0 kTfLiteInt32   kTfLiteMmapRo         16 bytes ( 0.0 MB)  1 4
Tensor   5 sequential/conv1d/conv1d/ExpandDims_1 kTfLiteFloat32   kTfLiteMmapRo       3600 bytes ( 0.0 MB)  30 1 10 3
Tensor   6 sequential/conv1d/conv1d_bias kTfLiteFloat32   kTfLiteMmapRo        120 bytes ( 0.0 MB)  30
Tensor   7 sequential/conv1d_1/conv1d/ExpandDims_1 kTfLiteFloat32   kTfLiteMmapRo      36000 bytes ( 0.0 MB)  30 1 10 30
Tensor   8 sequential/conv1d_1/conv1d/Squeeze kTfLiteFloat32  kTfLiteArenaRw       7440 bytes ( 0.0 MB)  1 1 62 30
Tensor   9 sequential/conv1d_1/conv1d_bias kTfLiteFloat32   kTfLiteMmapRo        120 bytes ( 0.0 MB)  30
Tensor  10 sequential/conv1d_2/conv1d/ExpandDims kTfLiteFloat32  kTfLiteArenaRw       2400 bytes ( 0.0 MB)  1 1 20 30
Tensor  11 sequential/conv1d_2/conv1d/ExpandDims/dim_0 kTfLiteInt32   kTfLiteMmapRo         16 bytes ( 0.0 MB)  1 4
Tensor  12 sequential/conv1d_2/conv1d/ExpandDims_1 kTfLiteFloat32   kTfLiteMmapRo      57600 bytes ( 0.1 MB)  48 1 10 30
Tensor  13 sequential/conv1d_2/conv1d/Squeeze kTfLiteFloat32  kTfLiteArenaRw       2112 bytes ( 0.0 MB)  1 1 11 48
Tensor  14 sequential/conv1d_2/conv1d_bias kTfLiteFloat32   kTfLiteMmapRo        192 bytes ( 0.0 MB)  48
Tensor  15 sequential/conv1d_3/Relu kTfLiteFloat32  kTfLiteArenaRw        384 bytes ( 0.0 MB)  1 2 48
Tensor  16 sequential/conv1d_3/conv1d/ExpandDims_1 kTfLiteFloat32   kTfLiteMmapRo      92160 bytes ( 0.1 MB)  48 1 10 48
Tensor  17 sequential/conv1d_3/conv1d/Squeeze kTfLiteFloat32  kTfLiteArenaRw        384 bytes ( 0.0 MB)  1 1 2 48
Tensor  18 sequential/conv1d_3/conv1d/Squeeze_shape kTfLiteInt32   kTfLiteMmapRo         12 bytes ( 0.0 MB)  3
Tensor  19 sequential/conv1d_3/conv1d_bias kTfLiteFloat32   kTfLiteMmapRo        192 bytes ( 0.0 MB)  48
Tensor  20 sequential/dense/BiasAdd kTfLiteFloat32  kTfLiteArenaRw         24 bytes ( 0.0 MB)  1 6
Tensor  21 sequential/dense/MatMul/ReadVariableOp/transpose kTfLiteFloat32   kTfLiteMmapRo       1152 bytes ( 0.0 MB)  6 48
Tensor  22 sequential/dense/MatMul_bias kTfLiteFloat32   kTfLiteMmapRo         24 bytes ( 0.0 MB)  6
Tensor  23 sequential/global_average_pooling1d/Mean kTfLiteFloat32  kTfLiteArenaRw        192 bytes ( 0.0 MB)  1 48
Tensor  24 sequential/global_average_pooling1d/Mean/reduction_indices kTfLiteInt32   kTfLiteMmapRo          4 bytes ( 0.0 MB) 
Tensor  25 sequential/max_pooling1d/ExpandDims kTfLiteFloat32  kTfLiteArenaRw       7440 bytes ( 0.0 MB)  1 62 1 30
Tensor  26 sequential/max_pooling1d/ExpandDims/dim_0 kTfLiteInt32   kTfLiteMmapRo         16 bytes ( 0.0 MB)  1 4
Tensor  27 sequential/max_pooling1d/MaxPool kTfLiteFloat32  kTfLiteArenaRw       2400 bytes ( 0.0 MB)  1 20 1 30
Tensor  28 (null)               kTfLiteInt32  kTfLiteArenaRw         12 bytes ( 0.0 MB)  3
Tensor  29 (null)               kTfLiteInt32  kTfLiteArenaRw          4 bytes ( 0.0 MB)  1
Tensor  30 (null)               kTfLiteFloat32  kTfLiteArenaRw        192 bytes ( 0.0 MB)  48
Tensor  31 (null)               kTfLiteNoType  kTfLiteMemNone          0 bytes ( 0.0 MB)  (null)
Tensor  32 (null)               kTfLiteNoType  kTfLiteMemNone          0 bytes ( 0.0 MB)  (null)
Tensor  33 (null)               kTfLiteFloat32  kTfLiteArenaRw       8520 bytes ( 0.0 MB)  1 1 71 30
Tensor  34 (null)               kTfLiteFloat32 kTfLiteArenaRwPersistent       3600 bytes ( 0.0 MB)  30 30
Tensor  35 (null)               kTfLiteFloat32  kTfLiteArenaRw      74400 bytes ( 0.1 MB)  1 1 62 300
Tensor  36 (null)               kTfLiteFloat32 kTfLiteArenaRwPersistent      36000 bytes ( 0.0 MB)  300 30
Tensor  37 (null)               kTfLiteFloat32  kTfLiteArenaRw      13200 bytes ( 0.0 MB)  1 1 11 300
Tensor  38 (null)               kTfLiteFloat32 kTfLiteArenaRwPersistent      57600 bytes ( 0.1 MB)  300 48
Tensor  39 (null)               kTfLiteFloat32  kTfLiteArenaRw       3840 bytes ( 0.0 MB)  1 1 2 480
Tensor  40 (null)               kTfLiteFloat32 kTfLiteArenaRwPersistent      92160 bytes ( 0.1 MB)  480 48

Node

Node   0 Operator Builtin Code  22
  Inputs: 1 4
  Outputs: 3
Node   1 Operator Builtin Code   3
  Inputs: 3 5 6
  Outputs: 2
Node   2 Operator Builtin Code   3
  Inputs: 2 7 9
  Outputs: 8
Node   3 Operator Builtin Code  22
  Inputs: 8 26
  Outputs: 25
Node   4 Operator Builtin Code  17
  Inputs: 25
  Outputs: 27
Node   5 Operator Builtin Code  22
  Inputs: 27 11
  Outputs: 10
Node   6 Operator Builtin Code   3
  Inputs: 10 12 14
  Outputs: 13
Node   7 Operator Builtin Code   3
  Inputs: 13 16 19
  Outputs: 17
Node   8 Operator Builtin Code  22
  Inputs: 17 18
  Outputs: 15
Node   9 Operator Builtin Code  40
  Inputs: 15 24
  Outputs: 23
Node  10 Operator Builtin Code   9
  Inputs: 23 21 22
  Outputs: 20
Node  11 Operator Builtin Code  25
  Inputs: 20
  Outputs: 0

Tensor的名字和形状

Tensor   0 Identity             kTfLiteFloat32  kTfLiteArenaRw         24 bytes ( 0.0 MB)  1 6
Tensor   1 conv1d_input         kTfLiteFloat32  kTfLiteArenaRw        960 bytes ( 0.0 MB)  1 80 3

怎样赋值input 

如果输入数据的形状如一维矢量,二维矩阵等,会引起tensor data的赋值方式吗?或者说需要根据shape更改输入数据的表示吗?如用二维数组表示矩阵等。其实没有必要,只要数据存储顺序按照二维的格式就行,可以用np.reshape一下即可

  float sensor_test[] = { //[0, 1, 0...]
          -1.02622092e-01,  1.73495474e+00,  1.96860060e+00, -7.71851445e-03,
         -5.41881331e-01,  7.67533877e-01, -3.54595601e-02, -2.29101321e+00,

        -----

}

     // Fill input buffers
    // TODO(user): Insert code to fill input tensors
    Interpreter *interp = interpreter.get();
    TfLiteTensor* input = interp->tensor(interp->inputs()[0]);
    for (int i=0; i < input->bytes/4; i++) {
      //input->data.f[i] = feature_test[i];
      input->data.f[i] = sensor_test[i];//和一维数据时一样,不用多维数组表示数据
      //input->data.f[i] = tensor_test_1[i];
    }

 

TFLite 模型quantilization化

toco需要是源码编译生成的不是自动安装的,另外后面的参数可以从上面tflite的打印log中看出

从结果看并不是所有的float变为uint8型

./toco --input_file='30_cnn.tflite' --input_format=TFLITE --output_format=TFLITE --output_file='quanized_30_cnn.tflite' --inference_type=FLOAT --input_type=FLOAT --input_arrays=conv1d_input --output_arrays=Identity --input_shapes=1,80,3 --post_training_quantize 
2019-07-11 12:06:26.592093: W tensorflow/lite/toco/toco_cmdline_flags.cc:283] --input_type is deprecated. It was an ambiguous flag that set both --input_data_types and --inference_input_type. If you are trying to complement the input file with information about the type of input arrays, use --input_data_type. If you are trying to control the quantization/dequantization of real-numbers input arrays in the output file, use --inference_input_type.
2019-07-11 12:06:26.594579: I tensorflow/lite/toco/graph_transformations/graph_transformations.cc:39] Before Removing unused ops: 12 operators, 28 arrays (0 quantized)
2019-07-11 12:06:26.594937: I tensorflow/lite/toco/graph_transformations/graph_transformations.cc:39] Before general graph transformations: 12 operators, 28 arrays (0 quantized)
2019-07-11 12:06:26.595742: I tensorflow/lite/toco/graph_transformations/graph_transformations.cc:39] After general graph transformations pass 1: 12 operators, 28 arrays (0 quantized)
2019-07-11 12:06:26.596726: I tensorflow/lite/toco/graph_transformations/graph_transformations.cc:39] Before dequantization graph transformations: 12 operators, 28 arrays (0 quantized)
2019-07-11 12:06:26.597362: I tensorflow/lite/toco/allocate_transient_arrays.cc:345] Total transient array allocated size: 17024 bytes, theoretical optimal value: 16064 bytes.
2019-07-11 12:06:26.597556: I tensorflow/lite/toco/toco_tooling.cc:397] Estimated count of arithmetic ops: 0.00166014 billion (note that a multiply-add is counted as 2 ops).
2019-07-11 12:06:26.598574: I tensorflow/lite/toco/tflite/export.cc:569] Quantizing TFLite model after conversion to flatbuffer. dump_graphviz will only output the model before this transformation. To visualize the output graph use lite/tools/optimize.py.
2019-07-11 12:06:26.603058: I tensorflow/lite/tools/optimize/quantize_weights.cc:199] Skipping quantization of tensor sequential/conv1d/conv1d/ExpandDims_1 because it has fewer than 1024 elements (900).
2019-07-11 12:06:26.603184: I tensorflow/lite/tools/optimize/quantize_weights.cc:278] Quantizing tensor sequential/conv1d_1/conv1d/ExpandDims_1 with 9000 elements for hybrid evaluation.
2019-07-11 12:06:26.603352: I tensorflow/lite/tools/optimize/quantize_weights.cc:278] Quantizing tensor sequential/conv1d_2/conv1d/ExpandDims_1 with 14400 elements for hybrid evaluation.
2019-07-11 12:06:26.603476: I tensorflow/lite/tools/optimize/quantize_weights.cc:278] Quantizing tensor sequential/conv1d_3/conv1d/ExpandDims_1 with 23040 elements for hybrid evaluation.
2019-07-11 12:06:26.603670: I tensorflow/lite/tools/optimize/quantize_weights.cc:199] Skipping quantization of tensor sequential/dense/MatMul/ReadVariableOp/transpose because it has fewer than 1024 elements (288). 

LSTM模型h5转换为tflite格式

原本计划使用lstm,且从tflite的operator也看到lstm, 但转换失败

ValueError: Cannot find the Placeholder op that is an input to the ReadVariableOp.

问题对应的源码如下:如果不是Placeholder, 是什么哪?

   165       if map_name_to_node[input_name].op != "Placeholder":
   166         raise ValueError("Cannot find the Placeholder op that is an input "
   167                          "to the ReadVariableOp.")

直接在源码打log没有输出,原因不明。

使用PyCharm 打断点:map_name_to_node[input_name].op 是Switch

看Graph_def中有大量的Switch, 也许是传说中的控制流吧,直接放弃lstm 改用cnn,从效果看也挺好

这篇关于TFLite:使用1维CNN处理序列数据的过程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1027316

相关文章

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,