TFLite:使用1维CNN处理序列数据的过程

2024-06-03 14:58

本文主要是介绍TFLite:使用1维CNN处理序列数据的过程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

开发环境

tf.__version__
'2.0.0-beta1'

tf.keras.__version__
'2.2.4-tf'

数据来源

http://www.cis.fordham.edu/wisdm/dataset.php

根据sensor数据x, y, z分类出Downstairs, Upstairs, jogging, sitting, standing, walking 6个类别

数据预处理函数

import pandas as pd
import numpy as np

import matplotlib.pyplot as plt
from scipy import stats
from sklearn import metrics
from sklearn.metrics import classification_report
from sklearn import preprocessing

import keras
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Flatten, Reshape, GlobalAveragePooling1D
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Conv1D, MaxPooling1D


columns = ['user','activity','timestamp', 'x-axis', 'y-axis', 'z-axis']
def read_data(file_patch):
    train = pd.read_csv(file_patch, header = None, names = columns)
    train = train.dropna()
    return train

# mean and std
def feature_normalize(feature):
    mu = np.mean(feature, axis=0)
    sigma = np.std(feature, axis=0)
    return (feature - mu) / sigma

# x1,y1,z1, x2, y2, z2
def create_segments_for_rnn(df, step, time_steps=200):
    X_train = []
    Y_train = []
    hot_test = []
    for i in range(0, df.shape[0] - time_steps, step):
        xyz_data = df[['x-axis', 'y-axis', 'z-axis']][i:i+time_steps]
        X_train.append(np.array(xyz_data))

        label = stats.mode(df['activity'][i: i + time_steps])[0][0]
        hot_test.append(label)
    #怎样找到 one-hot和字符串的对应关系?
    Y_train = np.asarray(pd.get_dummies(hot_test), dtype = np.float32)
    return np.array(X_train), Y_train

# x1, x2, x3, -----, x(timesteps), y1,...z1,...
def create_segments_for_cnn(df, step, time_steps=200):
    X_train = []
    Y_train = []
    hot_test = []
    for i in range(0, df.shape[0] - time_steps, step):
        xs = df['x-axis'].values[i: i + time_steps]
        ys = df['y-axis'].values[i: i + time_steps]
        zs = df['z-axis'].values[i: i + time_steps]
        X_train.append([xs, ys, zs])

        label = stats.mode(df['activity'][i: i + time_steps])[0][0]
        hot_test.append(label)

    reshaped_segments = np.asarray(X_train, dtype= np.float32).reshape(-1, time_steps, 3)
    #怎样找到 one-hot和字符串的对应关系?
    Y_train = np.asarray(pd.get_dummies(hot_test), dtype = np.float32)
    return reshaped_segments, Y_train

def shuffle_data(X, Y):
    np.random.seed(10)
    randomList = np.arange(X.shape[0])
    np.random.shuffle(randomList)
    return X[randomList], Y[randomList]

def split_data(X,Y,rate):
  X_train = X[int(X.shape[0]*rate):]
  Y_train = Y[int(Y.shape[0]*rate):]
  X_val = X[:int(X.shape[0]*rate)]
  Y_val = Y[:int(Y.shape[0]*rate)]
  return X_train, Y_train, X_val, Y_val

网络模型

rnn-lstm

参数的意义:64:lstm隐藏单元,input_length:time sequence length, input_dim: input feature number

return_sequences:多对多 还是多对一

def build_rnn_model(shape, num_classes):
  model = Sequential()
  model.add(LSTM(64, input_length = shape[1], input_dim = shape[2], return_sequences = True ))
  model.add(LSTM(64, return_sequences = False))
  model.add(Dense(num_classes, activation='softmax'))
  print(model.summary())
  model.compile(loss='categorical_crossentropy',
                optimizer='adam', metrics=['accuracy'])
  return model

cnn

参数的意义:30:提取多少个feature, 10: kenerl size, filter, input_shape:filter要扫描的形状

def build_cnn_model(shape, num_classes):
  model = Sequential()
  model.add(Conv1D(30, 10, activation='relu', input_shape=(shape[1], shape[2])))
  model.add(Conv1D(30, 10, activation='relu'))
  model.add(MaxPooling1D(3))
  model.add(Conv1D(48, 10, activation='relu'))
  model.add(Conv1D(48, 10, activation='relu'))
  model.add(GlobalAveragePooling1D())
  model.add(Dropout(0.5))
  model.add(Dense(num_classes, activation='softmax'))
  print(model.summary())
  model.compile(loss='categorical_crossentropy',
                optimizer='adam', metrics=['accuracy'])
  return model

这里理解下什么是1D cnn, 什么是2D cnn?

https://juejin.im/post/5beb7432f265da61524cf27c

[译] 在 Keras 中使用一维卷积神经网络处理时间序列数据

对应的参考代码

https://github.com/ni79ls/har-keras-cnn/blob/master/20180903_Keras_HAR_WISDM_CNN_v1.0_for_medium.py

无论是一维、二维还是三维,卷积神经网络(CNNs)都具有相同的特点和相同的处理方法。关键区别在于输入数据的维数以及特征检测器(或滤波器)如何在数据之间滑动

 模型training

df = read_data("WISDM_ar_v1.1_raw.txt")
df['x-axis'] = feature_normalize(df['x-axis'])
df['y-axis'] = feature_normalize(df['y-axis'])
df['z-axis'] = feature_normalize(df['z-axis'])
df.head()

#_x, _y = create_segments_for_cnn(df, 40, 80)
_x, _y = create_segments_for_rnn(df, 40, 80)
_xs, _ys = shuffle_data(_x, _y)

x_train, y_train, x_test, y_test = split_data(_xs, _ys, 0.1)
model = build_cnn_model(x_train.shape, 6)

callbacks_list = [
    keras.callbacks.ModelCheckpoint(
        filepath='callback_test.h5',
    ),
    #keras.callbacks.tensorboard(log_dir='my_log_dir', histogram_freq=1,)
]

# Hyper-parameters
BATCH_SIZE = 400
EPOCHS = 30

# Enable validation to use ModelCheckpoint and EarlyStopping callbacks.
history = model.fit(x_train,
                      y_train,
                      batch_size=BATCH_SIZE,
                      epochs=EPOCHS,
                      validation_split=0.2,
                      #callbacks=callbacks_list,not supported now
                      verbose=1)

数据处理方式的选择

不同数据格式训练出的效果不同
_x, _y = create_segments_for_rnn(df, 40, 80) 较好但生成训练数据慢

_x, _y = create_segments_for_cnn(df, 40, 80) 相对较差,但生成训练数据快

 有关callbacks 和tensorboard

当前tf.keras的版本对callbacks支持的不好,实测只有保存h5文件好用, 要使用keras,callbacks

callbacks_list = [
    keras.callbacks.ModelCheckpoint(
        filepath='lstm_model.h5',
    ),
    keras.callbacks.TensorBoard(
        log_dir='my_log_dir',
        histogram_freq=1,
    )
]

图形化表示训练效果

从网上找到一些方法,但报找不到xxx, 只要用history.history.keys()找到对应的字段就可以了

In [54]: history.history.keys()
Out[54]: ['loss', 'val_accuracy', 'val_loss', 'accuracy']

print("\n--- Learning curve of model training ---\n")

# summarize history for accuracy and loss
plt.figure(figsize=(6, 4))
plt.plot(history.history['accuracy'], "g--", label="Accuracy of training data")
plt.plot(history.history['val_accuracy'], "g", label="Accuracy of validation data")
plt.plot(history.history['loss'], "r--", label="Loss of training data")
plt.plot(history.history['val_loss'], "r", label="Loss of validation data")
plt.title('Model Accuracy and Loss')
plt.ylabel('Accuracy and Loss')
plt.xlabel('Training Epoch')
plt.ylim(0)
plt.legend()
plt.show()

测试数据上的效果

score = model.evaluate(x_test, y_test, verbose=1)

保存h5格式model文件

model.save('0710_cnn.h5')

h5转换为tflite格式文件

使用tflite_convert (推荐)


usage: tflite_convert [-h] --output_file OUTPUT_FILE
                      (--saved_model_dir SAVED_MODEL_DIR | --keras_model_file KERAS_MODEL_FILE)

tf.lite.TFLiteConverter.from_keras_model(model)

model = keras.models.load_model('path_to_my_model.h5')

converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()
open("converted_model.tflite", "wb").write(tflite_model)
 

tflite 模型文件在手机上的使用

修改编译 minimal

bazel build --cxxopt='--std=c++11' //tensorflow/lite/examples/minimal:minimal \
--crosstool_top=//external:android/crosstool \
--host_crosstool_top=@bazel_tools//tools/cpp:toolchain \
--cpu=arm64-v8a

tflite::PrintInterpreterState(interpreter.get());

会打印出这个model的结构如:

Interpreter has 41 tensors and 12 nodes

inputs/outputs


Inputs: 1
Outputs: 0

tensor

Tensor   0 Identity             kTfLiteFloat32  kTfLiteArenaRw         24 bytes ( 0.0 MB)  1 6
Tensor   1 conv1d_input         kTfLiteFloat32  kTfLiteArenaRw        960 bytes ( 0.0 MB)  1 80 3
Tensor   2 sequential/conv1d/Relu kTfLiteFloat32  kTfLiteArenaRw       8520 bytes ( 0.0 MB)  1 1 71 30
Tensor   3 sequential/conv1d/conv1d/ExpandDims kTfLiteFloat32  kTfLiteArenaRw        960 bytes ( 0.0 MB)  1 1 80 3
Tensor   4 sequential/conv1d/conv1d/ExpandDims/dim_0 kTfLiteInt32   kTfLiteMmapRo         16 bytes ( 0.0 MB)  1 4
Tensor   5 sequential/conv1d/conv1d/ExpandDims_1 kTfLiteFloat32   kTfLiteMmapRo       3600 bytes ( 0.0 MB)  30 1 10 3
Tensor   6 sequential/conv1d/conv1d_bias kTfLiteFloat32   kTfLiteMmapRo        120 bytes ( 0.0 MB)  30
Tensor   7 sequential/conv1d_1/conv1d/ExpandDims_1 kTfLiteFloat32   kTfLiteMmapRo      36000 bytes ( 0.0 MB)  30 1 10 30
Tensor   8 sequential/conv1d_1/conv1d/Squeeze kTfLiteFloat32  kTfLiteArenaRw       7440 bytes ( 0.0 MB)  1 1 62 30
Tensor   9 sequential/conv1d_1/conv1d_bias kTfLiteFloat32   kTfLiteMmapRo        120 bytes ( 0.0 MB)  30
Tensor  10 sequential/conv1d_2/conv1d/ExpandDims kTfLiteFloat32  kTfLiteArenaRw       2400 bytes ( 0.0 MB)  1 1 20 30
Tensor  11 sequential/conv1d_2/conv1d/ExpandDims/dim_0 kTfLiteInt32   kTfLiteMmapRo         16 bytes ( 0.0 MB)  1 4
Tensor  12 sequential/conv1d_2/conv1d/ExpandDims_1 kTfLiteFloat32   kTfLiteMmapRo      57600 bytes ( 0.1 MB)  48 1 10 30
Tensor  13 sequential/conv1d_2/conv1d/Squeeze kTfLiteFloat32  kTfLiteArenaRw       2112 bytes ( 0.0 MB)  1 1 11 48
Tensor  14 sequential/conv1d_2/conv1d_bias kTfLiteFloat32   kTfLiteMmapRo        192 bytes ( 0.0 MB)  48
Tensor  15 sequential/conv1d_3/Relu kTfLiteFloat32  kTfLiteArenaRw        384 bytes ( 0.0 MB)  1 2 48
Tensor  16 sequential/conv1d_3/conv1d/ExpandDims_1 kTfLiteFloat32   kTfLiteMmapRo      92160 bytes ( 0.1 MB)  48 1 10 48
Tensor  17 sequential/conv1d_3/conv1d/Squeeze kTfLiteFloat32  kTfLiteArenaRw        384 bytes ( 0.0 MB)  1 1 2 48
Tensor  18 sequential/conv1d_3/conv1d/Squeeze_shape kTfLiteInt32   kTfLiteMmapRo         12 bytes ( 0.0 MB)  3
Tensor  19 sequential/conv1d_3/conv1d_bias kTfLiteFloat32   kTfLiteMmapRo        192 bytes ( 0.0 MB)  48
Tensor  20 sequential/dense/BiasAdd kTfLiteFloat32  kTfLiteArenaRw         24 bytes ( 0.0 MB)  1 6
Tensor  21 sequential/dense/MatMul/ReadVariableOp/transpose kTfLiteFloat32   kTfLiteMmapRo       1152 bytes ( 0.0 MB)  6 48
Tensor  22 sequential/dense/MatMul_bias kTfLiteFloat32   kTfLiteMmapRo         24 bytes ( 0.0 MB)  6
Tensor  23 sequential/global_average_pooling1d/Mean kTfLiteFloat32  kTfLiteArenaRw        192 bytes ( 0.0 MB)  1 48
Tensor  24 sequential/global_average_pooling1d/Mean/reduction_indices kTfLiteInt32   kTfLiteMmapRo          4 bytes ( 0.0 MB) 
Tensor  25 sequential/max_pooling1d/ExpandDims kTfLiteFloat32  kTfLiteArenaRw       7440 bytes ( 0.0 MB)  1 62 1 30
Tensor  26 sequential/max_pooling1d/ExpandDims/dim_0 kTfLiteInt32   kTfLiteMmapRo         16 bytes ( 0.0 MB)  1 4
Tensor  27 sequential/max_pooling1d/MaxPool kTfLiteFloat32  kTfLiteArenaRw       2400 bytes ( 0.0 MB)  1 20 1 30
Tensor  28 (null)               kTfLiteInt32  kTfLiteArenaRw         12 bytes ( 0.0 MB)  3
Tensor  29 (null)               kTfLiteInt32  kTfLiteArenaRw          4 bytes ( 0.0 MB)  1
Tensor  30 (null)               kTfLiteFloat32  kTfLiteArenaRw        192 bytes ( 0.0 MB)  48
Tensor  31 (null)               kTfLiteNoType  kTfLiteMemNone          0 bytes ( 0.0 MB)  (null)
Tensor  32 (null)               kTfLiteNoType  kTfLiteMemNone          0 bytes ( 0.0 MB)  (null)
Tensor  33 (null)               kTfLiteFloat32  kTfLiteArenaRw       8520 bytes ( 0.0 MB)  1 1 71 30
Tensor  34 (null)               kTfLiteFloat32 kTfLiteArenaRwPersistent       3600 bytes ( 0.0 MB)  30 30
Tensor  35 (null)               kTfLiteFloat32  kTfLiteArenaRw      74400 bytes ( 0.1 MB)  1 1 62 300
Tensor  36 (null)               kTfLiteFloat32 kTfLiteArenaRwPersistent      36000 bytes ( 0.0 MB)  300 30
Tensor  37 (null)               kTfLiteFloat32  kTfLiteArenaRw      13200 bytes ( 0.0 MB)  1 1 11 300
Tensor  38 (null)               kTfLiteFloat32 kTfLiteArenaRwPersistent      57600 bytes ( 0.1 MB)  300 48
Tensor  39 (null)               kTfLiteFloat32  kTfLiteArenaRw       3840 bytes ( 0.0 MB)  1 1 2 480
Tensor  40 (null)               kTfLiteFloat32 kTfLiteArenaRwPersistent      92160 bytes ( 0.1 MB)  480 48

Node

Node   0 Operator Builtin Code  22
  Inputs: 1 4
  Outputs: 3
Node   1 Operator Builtin Code   3
  Inputs: 3 5 6
  Outputs: 2
Node   2 Operator Builtin Code   3
  Inputs: 2 7 9
  Outputs: 8
Node   3 Operator Builtin Code  22
  Inputs: 8 26
  Outputs: 25
Node   4 Operator Builtin Code  17
  Inputs: 25
  Outputs: 27
Node   5 Operator Builtin Code  22
  Inputs: 27 11
  Outputs: 10
Node   6 Operator Builtin Code   3
  Inputs: 10 12 14
  Outputs: 13
Node   7 Operator Builtin Code   3
  Inputs: 13 16 19
  Outputs: 17
Node   8 Operator Builtin Code  22
  Inputs: 17 18
  Outputs: 15
Node   9 Operator Builtin Code  40
  Inputs: 15 24
  Outputs: 23
Node  10 Operator Builtin Code   9
  Inputs: 23 21 22
  Outputs: 20
Node  11 Operator Builtin Code  25
  Inputs: 20
  Outputs: 0

Tensor的名字和形状

Tensor   0 Identity             kTfLiteFloat32  kTfLiteArenaRw         24 bytes ( 0.0 MB)  1 6
Tensor   1 conv1d_input         kTfLiteFloat32  kTfLiteArenaRw        960 bytes ( 0.0 MB)  1 80 3

怎样赋值input 

如果输入数据的形状如一维矢量,二维矩阵等,会引起tensor data的赋值方式吗?或者说需要根据shape更改输入数据的表示吗?如用二维数组表示矩阵等。其实没有必要,只要数据存储顺序按照二维的格式就行,可以用np.reshape一下即可

  float sensor_test[] = { //[0, 1, 0...]
          -1.02622092e-01,  1.73495474e+00,  1.96860060e+00, -7.71851445e-03,
         -5.41881331e-01,  7.67533877e-01, -3.54595601e-02, -2.29101321e+00,

        -----

}

     // Fill input buffers
    // TODO(user): Insert code to fill input tensors
    Interpreter *interp = interpreter.get();
    TfLiteTensor* input = interp->tensor(interp->inputs()[0]);
    for (int i=0; i < input->bytes/4; i++) {
      //input->data.f[i] = feature_test[i];
      input->data.f[i] = sensor_test[i];//和一维数据时一样,不用多维数组表示数据
      //input->data.f[i] = tensor_test_1[i];
    }

 

TFLite 模型quantilization化

toco需要是源码编译生成的不是自动安装的,另外后面的参数可以从上面tflite的打印log中看出

从结果看并不是所有的float变为uint8型

./toco --input_file='30_cnn.tflite' --input_format=TFLITE --output_format=TFLITE --output_file='quanized_30_cnn.tflite' --inference_type=FLOAT --input_type=FLOAT --input_arrays=conv1d_input --output_arrays=Identity --input_shapes=1,80,3 --post_training_quantize 
2019-07-11 12:06:26.592093: W tensorflow/lite/toco/toco_cmdline_flags.cc:283] --input_type is deprecated. It was an ambiguous flag that set both --input_data_types and --inference_input_type. If you are trying to complement the input file with information about the type of input arrays, use --input_data_type. If you are trying to control the quantization/dequantization of real-numbers input arrays in the output file, use --inference_input_type.
2019-07-11 12:06:26.594579: I tensorflow/lite/toco/graph_transformations/graph_transformations.cc:39] Before Removing unused ops: 12 operators, 28 arrays (0 quantized)
2019-07-11 12:06:26.594937: I tensorflow/lite/toco/graph_transformations/graph_transformations.cc:39] Before general graph transformations: 12 operators, 28 arrays (0 quantized)
2019-07-11 12:06:26.595742: I tensorflow/lite/toco/graph_transformations/graph_transformations.cc:39] After general graph transformations pass 1: 12 operators, 28 arrays (0 quantized)
2019-07-11 12:06:26.596726: I tensorflow/lite/toco/graph_transformations/graph_transformations.cc:39] Before dequantization graph transformations: 12 operators, 28 arrays (0 quantized)
2019-07-11 12:06:26.597362: I tensorflow/lite/toco/allocate_transient_arrays.cc:345] Total transient array allocated size: 17024 bytes, theoretical optimal value: 16064 bytes.
2019-07-11 12:06:26.597556: I tensorflow/lite/toco/toco_tooling.cc:397] Estimated count of arithmetic ops: 0.00166014 billion (note that a multiply-add is counted as 2 ops).
2019-07-11 12:06:26.598574: I tensorflow/lite/toco/tflite/export.cc:569] Quantizing TFLite model after conversion to flatbuffer. dump_graphviz will only output the model before this transformation. To visualize the output graph use lite/tools/optimize.py.
2019-07-11 12:06:26.603058: I tensorflow/lite/tools/optimize/quantize_weights.cc:199] Skipping quantization of tensor sequential/conv1d/conv1d/ExpandDims_1 because it has fewer than 1024 elements (900).
2019-07-11 12:06:26.603184: I tensorflow/lite/tools/optimize/quantize_weights.cc:278] Quantizing tensor sequential/conv1d_1/conv1d/ExpandDims_1 with 9000 elements for hybrid evaluation.
2019-07-11 12:06:26.603352: I tensorflow/lite/tools/optimize/quantize_weights.cc:278] Quantizing tensor sequential/conv1d_2/conv1d/ExpandDims_1 with 14400 elements for hybrid evaluation.
2019-07-11 12:06:26.603476: I tensorflow/lite/tools/optimize/quantize_weights.cc:278] Quantizing tensor sequential/conv1d_3/conv1d/ExpandDims_1 with 23040 elements for hybrid evaluation.
2019-07-11 12:06:26.603670: I tensorflow/lite/tools/optimize/quantize_weights.cc:199] Skipping quantization of tensor sequential/dense/MatMul/ReadVariableOp/transpose because it has fewer than 1024 elements (288). 

LSTM模型h5转换为tflite格式

原本计划使用lstm,且从tflite的operator也看到lstm, 但转换失败

ValueError: Cannot find the Placeholder op that is an input to the ReadVariableOp.

问题对应的源码如下:如果不是Placeholder, 是什么哪?

   165       if map_name_to_node[input_name].op != "Placeholder":
   166         raise ValueError("Cannot find the Placeholder op that is an input "
   167                          "to the ReadVariableOp.")

直接在源码打log没有输出,原因不明。

使用PyCharm 打断点:map_name_to_node[input_name].op 是Switch

看Graph_def中有大量的Switch, 也许是传说中的控制流吧,直接放弃lstm 改用cnn,从效果看也挺好

这篇关于TFLite:使用1维CNN处理序列数据的过程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1027316

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

oracle 11g导入\导出(expdp impdp)之导入过程

《oracle11g导入导出(expdpimpdp)之导入过程》导出需使用SEC.DMP格式,无分号;建立expdir目录(E:/exp)并确保存在;导入在cmd下执行,需sys用户权限;若需修... 目录准备文件导入(impdp)1、建立directory2、导入语句 3、更改密码总结上一个环节,我们讲了

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结