TFLite:使用1维CNN处理序列数据的过程

2024-06-03 14:58

本文主要是介绍TFLite:使用1维CNN处理序列数据的过程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

开发环境

tf.__version__
'2.0.0-beta1'

tf.keras.__version__
'2.2.4-tf'

数据来源

http://www.cis.fordham.edu/wisdm/dataset.php

根据sensor数据x, y, z分类出Downstairs, Upstairs, jogging, sitting, standing, walking 6个类别

数据预处理函数

import pandas as pd
import numpy as np

import matplotlib.pyplot as plt
from scipy import stats
from sklearn import metrics
from sklearn.metrics import classification_report
from sklearn import preprocessing

import keras
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Flatten, Reshape, GlobalAveragePooling1D
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Conv1D, MaxPooling1D


columns = ['user','activity','timestamp', 'x-axis', 'y-axis', 'z-axis']
def read_data(file_patch):
    train = pd.read_csv(file_patch, header = None, names = columns)
    train = train.dropna()
    return train

# mean and std
def feature_normalize(feature):
    mu = np.mean(feature, axis=0)
    sigma = np.std(feature, axis=0)
    return (feature - mu) / sigma

# x1,y1,z1, x2, y2, z2
def create_segments_for_rnn(df, step, time_steps=200):
    X_train = []
    Y_train = []
    hot_test = []
    for i in range(0, df.shape[0] - time_steps, step):
        xyz_data = df[['x-axis', 'y-axis', 'z-axis']][i:i+time_steps]
        X_train.append(np.array(xyz_data))

        label = stats.mode(df['activity'][i: i + time_steps])[0][0]
        hot_test.append(label)
    #怎样找到 one-hot和字符串的对应关系?
    Y_train = np.asarray(pd.get_dummies(hot_test), dtype = np.float32)
    return np.array(X_train), Y_train

# x1, x2, x3, -----, x(timesteps), y1,...z1,...
def create_segments_for_cnn(df, step, time_steps=200):
    X_train = []
    Y_train = []
    hot_test = []
    for i in range(0, df.shape[0] - time_steps, step):
        xs = df['x-axis'].values[i: i + time_steps]
        ys = df['y-axis'].values[i: i + time_steps]
        zs = df['z-axis'].values[i: i + time_steps]
        X_train.append([xs, ys, zs])

        label = stats.mode(df['activity'][i: i + time_steps])[0][0]
        hot_test.append(label)

    reshaped_segments = np.asarray(X_train, dtype= np.float32).reshape(-1, time_steps, 3)
    #怎样找到 one-hot和字符串的对应关系?
    Y_train = np.asarray(pd.get_dummies(hot_test), dtype = np.float32)
    return reshaped_segments, Y_train

def shuffle_data(X, Y):
    np.random.seed(10)
    randomList = np.arange(X.shape[0])
    np.random.shuffle(randomList)
    return X[randomList], Y[randomList]

def split_data(X,Y,rate):
  X_train = X[int(X.shape[0]*rate):]
  Y_train = Y[int(Y.shape[0]*rate):]
  X_val = X[:int(X.shape[0]*rate)]
  Y_val = Y[:int(Y.shape[0]*rate)]
  return X_train, Y_train, X_val, Y_val

网络模型

rnn-lstm

参数的意义:64:lstm隐藏单元,input_length:time sequence length, input_dim: input feature number

return_sequences:多对多 还是多对一

def build_rnn_model(shape, num_classes):
  model = Sequential()
  model.add(LSTM(64, input_length = shape[1], input_dim = shape[2], return_sequences = True ))
  model.add(LSTM(64, return_sequences = False))
  model.add(Dense(num_classes, activation='softmax'))
  print(model.summary())
  model.compile(loss='categorical_crossentropy',
                optimizer='adam', metrics=['accuracy'])
  return model

cnn

参数的意义:30:提取多少个feature, 10: kenerl size, filter, input_shape:filter要扫描的形状

def build_cnn_model(shape, num_classes):
  model = Sequential()
  model.add(Conv1D(30, 10, activation='relu', input_shape=(shape[1], shape[2])))
  model.add(Conv1D(30, 10, activation='relu'))
  model.add(MaxPooling1D(3))
  model.add(Conv1D(48, 10, activation='relu'))
  model.add(Conv1D(48, 10, activation='relu'))
  model.add(GlobalAveragePooling1D())
  model.add(Dropout(0.5))
  model.add(Dense(num_classes, activation='softmax'))
  print(model.summary())
  model.compile(loss='categorical_crossentropy',
                optimizer='adam', metrics=['accuracy'])
  return model

这里理解下什么是1D cnn, 什么是2D cnn?

https://juejin.im/post/5beb7432f265da61524cf27c

[译] 在 Keras 中使用一维卷积神经网络处理时间序列数据

对应的参考代码

https://github.com/ni79ls/har-keras-cnn/blob/master/20180903_Keras_HAR_WISDM_CNN_v1.0_for_medium.py

无论是一维、二维还是三维,卷积神经网络(CNNs)都具有相同的特点和相同的处理方法。关键区别在于输入数据的维数以及特征检测器(或滤波器)如何在数据之间滑动

 模型training

df = read_data("WISDM_ar_v1.1_raw.txt")
df['x-axis'] = feature_normalize(df['x-axis'])
df['y-axis'] = feature_normalize(df['y-axis'])
df['z-axis'] = feature_normalize(df['z-axis'])
df.head()

#_x, _y = create_segments_for_cnn(df, 40, 80)
_x, _y = create_segments_for_rnn(df, 40, 80)
_xs, _ys = shuffle_data(_x, _y)

x_train, y_train, x_test, y_test = split_data(_xs, _ys, 0.1)
model = build_cnn_model(x_train.shape, 6)

callbacks_list = [
    keras.callbacks.ModelCheckpoint(
        filepath='callback_test.h5',
    ),
    #keras.callbacks.tensorboard(log_dir='my_log_dir', histogram_freq=1,)
]

# Hyper-parameters
BATCH_SIZE = 400
EPOCHS = 30

# Enable validation to use ModelCheckpoint and EarlyStopping callbacks.
history = model.fit(x_train,
                      y_train,
                      batch_size=BATCH_SIZE,
                      epochs=EPOCHS,
                      validation_split=0.2,
                      #callbacks=callbacks_list,not supported now
                      verbose=1)

数据处理方式的选择

不同数据格式训练出的效果不同
_x, _y = create_segments_for_rnn(df, 40, 80) 较好但生成训练数据慢

_x, _y = create_segments_for_cnn(df, 40, 80) 相对较差,但生成训练数据快

 有关callbacks 和tensorboard

当前tf.keras的版本对callbacks支持的不好,实测只有保存h5文件好用, 要使用keras,callbacks

callbacks_list = [
    keras.callbacks.ModelCheckpoint(
        filepath='lstm_model.h5',
    ),
    keras.callbacks.TensorBoard(
        log_dir='my_log_dir',
        histogram_freq=1,
    )
]

图形化表示训练效果

从网上找到一些方法,但报找不到xxx, 只要用history.history.keys()找到对应的字段就可以了

In [54]: history.history.keys()
Out[54]: ['loss', 'val_accuracy', 'val_loss', 'accuracy']

print("\n--- Learning curve of model training ---\n")

# summarize history for accuracy and loss
plt.figure(figsize=(6, 4))
plt.plot(history.history['accuracy'], "g--", label="Accuracy of training data")
plt.plot(history.history['val_accuracy'], "g", label="Accuracy of validation data")
plt.plot(history.history['loss'], "r--", label="Loss of training data")
plt.plot(history.history['val_loss'], "r", label="Loss of validation data")
plt.title('Model Accuracy and Loss')
plt.ylabel('Accuracy and Loss')
plt.xlabel('Training Epoch')
plt.ylim(0)
plt.legend()
plt.show()

测试数据上的效果

score = model.evaluate(x_test, y_test, verbose=1)

保存h5格式model文件

model.save('0710_cnn.h5')

h5转换为tflite格式文件

使用tflite_convert (推荐)


usage: tflite_convert [-h] --output_file OUTPUT_FILE
                      (--saved_model_dir SAVED_MODEL_DIR | --keras_model_file KERAS_MODEL_FILE)

tf.lite.TFLiteConverter.from_keras_model(model)

model = keras.models.load_model('path_to_my_model.h5')

converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()
open("converted_model.tflite", "wb").write(tflite_model)
 

tflite 模型文件在手机上的使用

修改编译 minimal

bazel build --cxxopt='--std=c++11' //tensorflow/lite/examples/minimal:minimal \
--crosstool_top=//external:android/crosstool \
--host_crosstool_top=@bazel_tools//tools/cpp:toolchain \
--cpu=arm64-v8a

tflite::PrintInterpreterState(interpreter.get());

会打印出这个model的结构如:

Interpreter has 41 tensors and 12 nodes

inputs/outputs


Inputs: 1
Outputs: 0

tensor

Tensor   0 Identity             kTfLiteFloat32  kTfLiteArenaRw         24 bytes ( 0.0 MB)  1 6
Tensor   1 conv1d_input         kTfLiteFloat32  kTfLiteArenaRw        960 bytes ( 0.0 MB)  1 80 3
Tensor   2 sequential/conv1d/Relu kTfLiteFloat32  kTfLiteArenaRw       8520 bytes ( 0.0 MB)  1 1 71 30
Tensor   3 sequential/conv1d/conv1d/ExpandDims kTfLiteFloat32  kTfLiteArenaRw        960 bytes ( 0.0 MB)  1 1 80 3
Tensor   4 sequential/conv1d/conv1d/ExpandDims/dim_0 kTfLiteInt32   kTfLiteMmapRo         16 bytes ( 0.0 MB)  1 4
Tensor   5 sequential/conv1d/conv1d/ExpandDims_1 kTfLiteFloat32   kTfLiteMmapRo       3600 bytes ( 0.0 MB)  30 1 10 3
Tensor   6 sequential/conv1d/conv1d_bias kTfLiteFloat32   kTfLiteMmapRo        120 bytes ( 0.0 MB)  30
Tensor   7 sequential/conv1d_1/conv1d/ExpandDims_1 kTfLiteFloat32   kTfLiteMmapRo      36000 bytes ( 0.0 MB)  30 1 10 30
Tensor   8 sequential/conv1d_1/conv1d/Squeeze kTfLiteFloat32  kTfLiteArenaRw       7440 bytes ( 0.0 MB)  1 1 62 30
Tensor   9 sequential/conv1d_1/conv1d_bias kTfLiteFloat32   kTfLiteMmapRo        120 bytes ( 0.0 MB)  30
Tensor  10 sequential/conv1d_2/conv1d/ExpandDims kTfLiteFloat32  kTfLiteArenaRw       2400 bytes ( 0.0 MB)  1 1 20 30
Tensor  11 sequential/conv1d_2/conv1d/ExpandDims/dim_0 kTfLiteInt32   kTfLiteMmapRo         16 bytes ( 0.0 MB)  1 4
Tensor  12 sequential/conv1d_2/conv1d/ExpandDims_1 kTfLiteFloat32   kTfLiteMmapRo      57600 bytes ( 0.1 MB)  48 1 10 30
Tensor  13 sequential/conv1d_2/conv1d/Squeeze kTfLiteFloat32  kTfLiteArenaRw       2112 bytes ( 0.0 MB)  1 1 11 48
Tensor  14 sequential/conv1d_2/conv1d_bias kTfLiteFloat32   kTfLiteMmapRo        192 bytes ( 0.0 MB)  48
Tensor  15 sequential/conv1d_3/Relu kTfLiteFloat32  kTfLiteArenaRw        384 bytes ( 0.0 MB)  1 2 48
Tensor  16 sequential/conv1d_3/conv1d/ExpandDims_1 kTfLiteFloat32   kTfLiteMmapRo      92160 bytes ( 0.1 MB)  48 1 10 48
Tensor  17 sequential/conv1d_3/conv1d/Squeeze kTfLiteFloat32  kTfLiteArenaRw        384 bytes ( 0.0 MB)  1 1 2 48
Tensor  18 sequential/conv1d_3/conv1d/Squeeze_shape kTfLiteInt32   kTfLiteMmapRo         12 bytes ( 0.0 MB)  3
Tensor  19 sequential/conv1d_3/conv1d_bias kTfLiteFloat32   kTfLiteMmapRo        192 bytes ( 0.0 MB)  48
Tensor  20 sequential/dense/BiasAdd kTfLiteFloat32  kTfLiteArenaRw         24 bytes ( 0.0 MB)  1 6
Tensor  21 sequential/dense/MatMul/ReadVariableOp/transpose kTfLiteFloat32   kTfLiteMmapRo       1152 bytes ( 0.0 MB)  6 48
Tensor  22 sequential/dense/MatMul_bias kTfLiteFloat32   kTfLiteMmapRo         24 bytes ( 0.0 MB)  6
Tensor  23 sequential/global_average_pooling1d/Mean kTfLiteFloat32  kTfLiteArenaRw        192 bytes ( 0.0 MB)  1 48
Tensor  24 sequential/global_average_pooling1d/Mean/reduction_indices kTfLiteInt32   kTfLiteMmapRo          4 bytes ( 0.0 MB) 
Tensor  25 sequential/max_pooling1d/ExpandDims kTfLiteFloat32  kTfLiteArenaRw       7440 bytes ( 0.0 MB)  1 62 1 30
Tensor  26 sequential/max_pooling1d/ExpandDims/dim_0 kTfLiteInt32   kTfLiteMmapRo         16 bytes ( 0.0 MB)  1 4
Tensor  27 sequential/max_pooling1d/MaxPool kTfLiteFloat32  kTfLiteArenaRw       2400 bytes ( 0.0 MB)  1 20 1 30
Tensor  28 (null)               kTfLiteInt32  kTfLiteArenaRw         12 bytes ( 0.0 MB)  3
Tensor  29 (null)               kTfLiteInt32  kTfLiteArenaRw          4 bytes ( 0.0 MB)  1
Tensor  30 (null)               kTfLiteFloat32  kTfLiteArenaRw        192 bytes ( 0.0 MB)  48
Tensor  31 (null)               kTfLiteNoType  kTfLiteMemNone          0 bytes ( 0.0 MB)  (null)
Tensor  32 (null)               kTfLiteNoType  kTfLiteMemNone          0 bytes ( 0.0 MB)  (null)
Tensor  33 (null)               kTfLiteFloat32  kTfLiteArenaRw       8520 bytes ( 0.0 MB)  1 1 71 30
Tensor  34 (null)               kTfLiteFloat32 kTfLiteArenaRwPersistent       3600 bytes ( 0.0 MB)  30 30
Tensor  35 (null)               kTfLiteFloat32  kTfLiteArenaRw      74400 bytes ( 0.1 MB)  1 1 62 300
Tensor  36 (null)               kTfLiteFloat32 kTfLiteArenaRwPersistent      36000 bytes ( 0.0 MB)  300 30
Tensor  37 (null)               kTfLiteFloat32  kTfLiteArenaRw      13200 bytes ( 0.0 MB)  1 1 11 300
Tensor  38 (null)               kTfLiteFloat32 kTfLiteArenaRwPersistent      57600 bytes ( 0.1 MB)  300 48
Tensor  39 (null)               kTfLiteFloat32  kTfLiteArenaRw       3840 bytes ( 0.0 MB)  1 1 2 480
Tensor  40 (null)               kTfLiteFloat32 kTfLiteArenaRwPersistent      92160 bytes ( 0.1 MB)  480 48

Node

Node   0 Operator Builtin Code  22
  Inputs: 1 4
  Outputs: 3
Node   1 Operator Builtin Code   3
  Inputs: 3 5 6
  Outputs: 2
Node   2 Operator Builtin Code   3
  Inputs: 2 7 9
  Outputs: 8
Node   3 Operator Builtin Code  22
  Inputs: 8 26
  Outputs: 25
Node   4 Operator Builtin Code  17
  Inputs: 25
  Outputs: 27
Node   5 Operator Builtin Code  22
  Inputs: 27 11
  Outputs: 10
Node   6 Operator Builtin Code   3
  Inputs: 10 12 14
  Outputs: 13
Node   7 Operator Builtin Code   3
  Inputs: 13 16 19
  Outputs: 17
Node   8 Operator Builtin Code  22
  Inputs: 17 18
  Outputs: 15
Node   9 Operator Builtin Code  40
  Inputs: 15 24
  Outputs: 23
Node  10 Operator Builtin Code   9
  Inputs: 23 21 22
  Outputs: 20
Node  11 Operator Builtin Code  25
  Inputs: 20
  Outputs: 0

Tensor的名字和形状

Tensor   0 Identity             kTfLiteFloat32  kTfLiteArenaRw         24 bytes ( 0.0 MB)  1 6
Tensor   1 conv1d_input         kTfLiteFloat32  kTfLiteArenaRw        960 bytes ( 0.0 MB)  1 80 3

怎样赋值input 

如果输入数据的形状如一维矢量,二维矩阵等,会引起tensor data的赋值方式吗?或者说需要根据shape更改输入数据的表示吗?如用二维数组表示矩阵等。其实没有必要,只要数据存储顺序按照二维的格式就行,可以用np.reshape一下即可

  float sensor_test[] = { //[0, 1, 0...]
          -1.02622092e-01,  1.73495474e+00,  1.96860060e+00, -7.71851445e-03,
         -5.41881331e-01,  7.67533877e-01, -3.54595601e-02, -2.29101321e+00,

        -----

}

     // Fill input buffers
    // TODO(user): Insert code to fill input tensors
    Interpreter *interp = interpreter.get();
    TfLiteTensor* input = interp->tensor(interp->inputs()[0]);
    for (int i=0; i < input->bytes/4; i++) {
      //input->data.f[i] = feature_test[i];
      input->data.f[i] = sensor_test[i];//和一维数据时一样,不用多维数组表示数据
      //input->data.f[i] = tensor_test_1[i];
    }

 

TFLite 模型quantilization化

toco需要是源码编译生成的不是自动安装的,另外后面的参数可以从上面tflite的打印log中看出

从结果看并不是所有的float变为uint8型

./toco --input_file='30_cnn.tflite' --input_format=TFLITE --output_format=TFLITE --output_file='quanized_30_cnn.tflite' --inference_type=FLOAT --input_type=FLOAT --input_arrays=conv1d_input --output_arrays=Identity --input_shapes=1,80,3 --post_training_quantize 
2019-07-11 12:06:26.592093: W tensorflow/lite/toco/toco_cmdline_flags.cc:283] --input_type is deprecated. It was an ambiguous flag that set both --input_data_types and --inference_input_type. If you are trying to complement the input file with information about the type of input arrays, use --input_data_type. If you are trying to control the quantization/dequantization of real-numbers input arrays in the output file, use --inference_input_type.
2019-07-11 12:06:26.594579: I tensorflow/lite/toco/graph_transformations/graph_transformations.cc:39] Before Removing unused ops: 12 operators, 28 arrays (0 quantized)
2019-07-11 12:06:26.594937: I tensorflow/lite/toco/graph_transformations/graph_transformations.cc:39] Before general graph transformations: 12 operators, 28 arrays (0 quantized)
2019-07-11 12:06:26.595742: I tensorflow/lite/toco/graph_transformations/graph_transformations.cc:39] After general graph transformations pass 1: 12 operators, 28 arrays (0 quantized)
2019-07-11 12:06:26.596726: I tensorflow/lite/toco/graph_transformations/graph_transformations.cc:39] Before dequantization graph transformations: 12 operators, 28 arrays (0 quantized)
2019-07-11 12:06:26.597362: I tensorflow/lite/toco/allocate_transient_arrays.cc:345] Total transient array allocated size: 17024 bytes, theoretical optimal value: 16064 bytes.
2019-07-11 12:06:26.597556: I tensorflow/lite/toco/toco_tooling.cc:397] Estimated count of arithmetic ops: 0.00166014 billion (note that a multiply-add is counted as 2 ops).
2019-07-11 12:06:26.598574: I tensorflow/lite/toco/tflite/export.cc:569] Quantizing TFLite model after conversion to flatbuffer. dump_graphviz will only output the model before this transformation. To visualize the output graph use lite/tools/optimize.py.
2019-07-11 12:06:26.603058: I tensorflow/lite/tools/optimize/quantize_weights.cc:199] Skipping quantization of tensor sequential/conv1d/conv1d/ExpandDims_1 because it has fewer than 1024 elements (900).
2019-07-11 12:06:26.603184: I tensorflow/lite/tools/optimize/quantize_weights.cc:278] Quantizing tensor sequential/conv1d_1/conv1d/ExpandDims_1 with 9000 elements for hybrid evaluation.
2019-07-11 12:06:26.603352: I tensorflow/lite/tools/optimize/quantize_weights.cc:278] Quantizing tensor sequential/conv1d_2/conv1d/ExpandDims_1 with 14400 elements for hybrid evaluation.
2019-07-11 12:06:26.603476: I tensorflow/lite/tools/optimize/quantize_weights.cc:278] Quantizing tensor sequential/conv1d_3/conv1d/ExpandDims_1 with 23040 elements for hybrid evaluation.
2019-07-11 12:06:26.603670: I tensorflow/lite/tools/optimize/quantize_weights.cc:199] Skipping quantization of tensor sequential/dense/MatMul/ReadVariableOp/transpose because it has fewer than 1024 elements (288). 

LSTM模型h5转换为tflite格式

原本计划使用lstm,且从tflite的operator也看到lstm, 但转换失败

ValueError: Cannot find the Placeholder op that is an input to the ReadVariableOp.

问题对应的源码如下:如果不是Placeholder, 是什么哪?

   165       if map_name_to_node[input_name].op != "Placeholder":
   166         raise ValueError("Cannot find the Placeholder op that is an input "
   167                          "to the ReadVariableOp.")

直接在源码打log没有输出,原因不明。

使用PyCharm 打断点:map_name_to_node[input_name].op 是Switch

看Graph_def中有大量的Switch, 也许是传说中的控制流吧,直接放弃lstm 改用cnn,从效果看也挺好

这篇关于TFLite:使用1维CNN处理序列数据的过程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1027316

相关文章

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

vue使用docxtemplater导出word

《vue使用docxtemplater导出word》docxtemplater是一种邮件合并工具,以编程方式使用并处理条件、循环,并且可以扩展以插入任何内容,下面我们来看看如何使用docxtempl... 目录docxtemplatervue使用docxtemplater导出word安装常用语法 封装导出方

将Mybatis升级为Mybatis-Plus的详细过程

《将Mybatis升级为Mybatis-Plus的详细过程》本文详细介绍了在若依管理系统(v3.8.8)中将MyBatis升级为MyBatis-Plus的过程,旨在提升开发效率,通过本文,开发者可实现... 目录说明流程增加依赖修改配置文件注释掉MyBATisConfig里面的Bean代码生成使用IDEA生

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain