keras: CNN(1D)

2024-06-03 14:58
文章标签 cnn keras 1d

本文主要是介绍keras: CNN(1D),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

怎样确认使用是keras还是tensorflow的keras?

from tensorflow.keras.models import Sequential //tensorflow 实现的keras

from keras.models import Sequential //common的keras

如果tf版本是: 2.0.0-beta1,tensorflow已经集成或者说实现了keras API

下面的错误可以明确看出来,如果

from keras.models import Sequential 

//执行

model_m = Sequential()

AttributeError: 'module' object has no attribute 'get_default_graph'

from tensorflow.keras.models import Sequential

model_m = Sequential()//执行正常

https://juejin.im/post/5beb7432f265da61524cf27c

在 Keras 中使用一维卷积神经网络处理时间序列数据

https://github.com/ni79ls/har-keras-cnn/blob/master/20180903_Keras_HAR_WISDM_CNN_v1.0_for_medium.py

 

https://aqibsaeed.github.io/2016-11-04-human-activity-recognition-cnn/

 

In [13]: score
Out[13]: [0.08559105828158078, 0.98542804]

 

In [8]: score
Out[8]: [0.16946523140829425, 0.9730419] 

100->80, 160->128

 

In [10]: score
Out[10]: [0.08208727640229863, 0.98724955]
 

这篇关于keras: CNN(1D)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1027315

相关文章

深度学习实战:如何利用CNN实现人脸识别考勤系统

1. 何为CNN及其在人脸识别中的应用 卷积神经网络(CNN)是深度学习中的核心技术之一,擅长处理图像数据。CNN通过卷积层提取图像的局部特征,在人脸识别领域尤其适用。CNN的多个层次可以逐步提取面部的特征,最终实现精确的身份识别。对于考勤系统而言,CNN可以自动从摄像头捕捉的视频流中检测并识别出员工的面部。 我们在该项目中采用了 RetinaFace 模型,它基于CNN的结构实现高效、精准的

如何将卷积神经网络(CNN)应用于医学图像分析:从分类到分割和检测的实用指南

引言 在现代医疗领域,医学图像已经成为疾病诊断和治疗规划的重要工具。医学图像的类型繁多,包括但不限于X射线、CT(计算机断层扫描)、MRI(磁共振成像)和超声图像。这些图像提供了对身体内部结构的详细视图,有助于医生在进行准确诊断和制定个性化治疗方案时获取关键的信息。 1. 医学图像分析的挑战 医学图像分析面临诸多挑战,其中包括: 图像数据的复杂性:医学图像通常具有高维度和复杂的结构

CNN-LSTM模型中应用贝叶斯推断进行时间序列预测

这篇论文的标题是《在混合CNN-LSTM模型中应用贝叶斯推断进行时间序列预测》,作者是Thi-Lich Nghiem, Viet-Duc Le, Thi-Lan Le, Pierre Maréchal, Daniel Delahaye, Andrija Vidosavljevic。论文发表在2022年10月于越南富国岛举行的国际多媒体分析与模式识别会议(MAPR)上。 摘要部分提到,卷积

【tensorflow CNN】构建cnn网络,识别mnist手写数字识别

#coding:utf8"""构建cnn网络,识别mnistinput conv1 padding max_pool([2,2],strides=[2,2]) conv2 x[-1,28,28,1] 卷积 [5,5,1,32] -> [-1,24,24,32]->[-1,28,

Kaggle刷比赛的利器,LR,LGBM,XGBoost,Keras

刷比赛利器,感谢分享的人。 摘要 最近打各种比赛,在这里分享一些General Model,稍微改改就能用的 环境: python 3.5.2 XGBoost调参大全: http://blog.csdn.net/han_xiaoyang/article/details/52665396 XGBoost 官方API: http://xgboost.readthedocs.io/en

震惊,从仿真走向现实,3D Map最大提升超12,Cube R-CNN使用合成数据集迁移到真实数据集

震惊,从仿真走向现实,3D Map最大提升超12,Cube R-CNN使用合成数据集迁移到真实数据集 Abstract 由于摄像机视角多变和场景条件不可预测,在动态路边场景中从单目图像中准确检测三维物体仍然是一个具有挑战性的问题。本文介绍了一种两阶段的训练策略来应对这些挑战。我们的方法首先在大规模合成数据集RoadSense3D上训练模型,该数据集提供了多样化的场景以实现稳健的特征学习。随后,

深度学习 之 keras

注意使用keras 首先压迫安装theano 或者tensorflow,keras默认使用tensorflow   首先创建一个moel from keras.models import Sequentialmodel = Sequential()   然后添加神经层及激活函数 from keras.layers import Dense, Activationmodel.ad

图像识别之目标检测keras-tensorflow 实现yolo3

关于windows gpu环境请参考https://liuhuiyao.blog.csdn.net/article/details/109271898  keras-yolo3 地址  https://github.com/qqwweee/keras-yolo3 本人真实实现的情况是: windows 10 tensorboard             1.8.0 tensorflow-

windows 机器学习 tensorflow-gpu +keras gpu环境的 相关驱动安装-CUDA,cuDNN。

本人真实实现的情况是: windows 10 tensorboard             1.8.0 tensorflow-gpu          1.8.0 pip install -i https://pypi.mirrors.ustc.edu.cn/simple/ tensorflow-gpu==1.8.0 Keras                   2.2.4 pip

Segmentation简记-Multi-stream CNN based Video Semantic Segmentation for Automated Driving

创新点 1.RFCN & MSFCN 总结 网络结构如图所示。输入视频得到图像分割结果。 简单粗暴