比较(二)利用python绘制雷达图

2024-06-03 14:44
文章标签 python 比较 绘制 雷达

本文主要是介绍比较(二)利用python绘制雷达图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

比较(二)利用python绘制雷达图

雷达图(Radar Chart)简介

1

雷达图可以用来比较多个定量变量,也可以用于查看数据集中变量的得分高低,是显示性能表现的理想之选。缺点是变量过多容易造成阅读困难。

快速绘制

  1. 基于matplotlib

    import matplotlib.pyplot as plt
    import pandas as pd
    from math import pi# 自定义数据
    df = pd.DataFrame({
    'group': ['A','B','C','D'],
    'var1': [38, 1.5, 30, 4],
    'var2': [29, 10, 9, 34],
    'var3': [8, 39, 23, 24],
    'var4': [7, 31, 33, 14],
    'var5': [28, 15, 32, 14]
    })# 计算变量个数
    categories=list(df)[1:]
    N = len(categories)# 仅绘制第一行数据的雷达图
    values = df.loc[0].drop('group').values.flatten().tolist() # 获取第一行数据,剔除group
    values += values[:1] # 闭合圆形图,需要在末尾增加一个与起始相同的值# 计算每个轴的角度
    angles = [n / float(N) * 2 * pi for n in range(N)] # 每个变量的角度位置
    angles += angles[:1] # 闭合圆形图,需要在末尾增加一个与起始相同的值# 初始化布局
    ax = plt.subplot(111, polar=True)# 将每个变量绘制在极坐标上
    plt.xticks(angles[:-1], categories, color='grey', size=8)# y标签
    ax.set_rlabel_position(0)
    plt.yticks([10,20,30], ["10","20","30"], color="grey", size=7)
    plt.ylim(0,40)# 绘制数据
    ax.plot(angles, values, linewidth=1, linestyle='solid')# 填充区域颜色
    ax.fill(angles, values, 'b', alpha=0.1)plt.show()
    

    2

定制多样化的雷达图

自定义雷达图一般是结合使用场景对相关参数进行修改,并辅以其他的绘图知识。参数信息可以通过官网进行查看,其他的绘图知识则更多来源于实战经验,大家不妨将接下来的绘图作为一种学习经验,以便于日后总结。

  1. 一图绘制多个雷达图

    import matplotlib.pyplot as plt
    import pandas as pd
    from math import pi# 自定义数据
    df = pd.DataFrame({
    'group': ['A','B','C','D'],
    'var1': [38, 1.5, 30, 4],
    'var2': [29, 10, 9, 34],
    'var3': [8, 39, 23, 24],
    'var4': [7, 31, 33, 14],
    'var5': [28, 15, 32, 14]
    })# 计算变量个数
    categories=list(df)[1:]
    N = len(categories)# 仅绘制第一行数据的雷达图
    values = df.loc[0].drop('group').values.flatten().tolist() # 获取第一行数据,剔除group
    values += values[:1] # 闭合圆形图,需要在末尾增加一个与起始相同的值# 计算每个轴的角度
    angles = [n / float(N) * 2 * pi for n in range(N)] # 每个变量的角度位置
    angles += angles[:1] # 闭合圆形图,需要在末尾增加一个与起始相同的值# 初始化布局
    ax = plt.subplot(111, polar=True)# 偏移-将第一个轴位于顶部
    ax.set_theta_offset(pi / 2)
    ax.set_theta_direction(-1)# 将每个变量绘制在极坐标上
    plt.xticks(angles[:-1], categories)# y标签
    ax.set_rlabel_position(0)
    plt.yticks([10,20,30], ["10","20","30"], color="grey", size=7)
    plt.ylim(0,40)# 添加多个极坐标图
    # 绘制第一个图
    values = df.loc[0].drop('group').values.flatten().tolist()
    values += values[:1]
    ax.plot(angles, values, linewidth=1, linestyle='solid', label="group A")
    ax.fill(angles, values, 'b', alpha=0.1)# 绘制第二个图
    values = df.loc[1].drop('group').values.flatten().tolist()
    values += values[:1]
    ax.plot(angles, values, linewidth=1, linestyle='solid', label="group B")
    ax.fill(angles, values, 'r', alpha=0.1)# 图例
    plt.legend(loc='upper right', bbox_to_anchor=(0.1, 0.1))plt.show()
    

    3

  2. 分组雷达图

    import matplotlib.pyplot as plt
    import pandas as pd
    from math import pi# 自定义数据
    df = pd.DataFrame({
    'group': ['A','B','C','D'],
    'var1': [38, 1.5, 30, 4],
    'var2': [29, 10, 9, 34],
    'var3': [8, 39, 23, 24],
    'var4': [7, 31, 33, 14],
    'var5': [28, 15, 32, 14]
    })# 自定义函数-每一行绘制一个雷达图
    def make_spider( row, title, color):# 计算变量个数categories=list(df)[1:]N = len(categories)# 计算角度angles = [n / float(N) * 2 * pi for n in range(N)]angles += angles[:1]# 初始化布局ax = plt.subplot(2,2,row+1, polar=True, )# 偏移至顶部ax.set_theta_offset(pi / 2)ax.set_theta_direction(-1)# x标签plt.xticks(angles[:-1], categories, color='grey', size=8)# y标签ax.set_rlabel_position(0)plt.yticks([10,20,30], ["10","20","30"], color="grey", size=7)plt.ylim(0,40)# 极坐标图values = df.loc[row].drop('group').values.flatten().tolist()values += values[:1]ax.plot(angles, values, color=color, linewidth=2, linestyle='solid')ax.fill(angles, values, color=color, alpha=0.4)# 标题plt.title(title, size=11, color=color, y=1.1)# 图标参数
    my_dpi=96
    plt.figure(figsize=(1000/my_dpi, 1000/my_dpi), dpi=my_dpi)# 调色板
    my_palette = plt.cm.get_cmap("Set2", len(df.index))# 绘制多个图
    for row in range(0, len(df.index)):make_spider( row=row, title='group '+df['group'][row], color=my_palette(row))
    

    4

总结

以上通过matplotlib结合极坐标绘制雷达图,并通过其他绘图知识自定义各种各样的雷达图来适应相关使用场景。

共勉~

这篇关于比较(二)利用python绘制雷达图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1027283

相关文章

百度/小米/滴滴/京东,中台架构比较

小米中台建设实践 01 小米的三大中台建设:业务+数据+技术 业务中台--从业务说起 在中台建设中,需要规范化的服务接口、一致整合化的数据、容器化的技术组件以及弹性的基础设施。并结合业务情况,判定是否真的需要中台。 小米参考了业界优秀的案例包括移动中台、数据中台、业务中台、技术中台等,再结合其业务发展历程及业务现状,整理了中台架构的核心方法论,一是企业如何共享服务,二是如何为业务提供便利。

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

【WebGPU Unleashed】1.1 绘制三角形

一部2024新的WebGPU教程,作者Shi Yan。内容很好,翻译过来与大家共享,内容上会有改动,加上自己的理解。更多精彩内容尽在 dt.sim3d.cn ,关注公众号【sky的数孪技术】,技术交流、源码下载请添加微信号:digital_twin123 在 3D 渲染领域,三角形是最基本的绘制元素。在这里,我们将学习如何绘制单个三角形。接下来我们将制作一个简单的着色器来定义三角形内的像素

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

Flutter 进阶:绘制加载动画

绘制加载动画:由小圆组成的大圆 1. 定义 LoadingScreen 类2. 实现 _LoadingScreenState 类3. 定义 LoadingPainter 类4. 总结 实现加载动画 我们需要定义两个类:LoadingScreen 和 LoadingPainter。LoadingScreen 负责控制动画的状态,而 LoadingPainter 则负责绘制动画。

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

HTML提交表单给python

python 代码 from flask import Flask, request, render_template, redirect, url_forapp = Flask(__name__)@app.route('/')def form():# 渲染表单页面return render_template('./index.html')@app.route('/submit_form',