摸鱼大数据——Hive函数14

2024-06-03 14:28
文章标签 数据 函数 14 hive 摸鱼

本文主要是介绍摸鱼大数据——Hive函数14,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

14、开窗(开列)函数

官网链接:Window Functions - Apache AsterixDB - Apache Software Foundation

14.1 基础使用
开窗函数格式: 开窗函数 over(partition by 分组字段名 [order by 排序字段名 asc|desc] [rows between 开窗开始 and 开窗结束])
​
partition by: 按照谁进行分组
order by: 对分组后的数据进行排序
rows between and: 限定窗口统计数据范围
​
开窗函数分类:第一类: 编号相关。row_number(): 123456。不管数据有没有重复,单调递增往后进行编号rank(): 123446。如果遇到相同数据,那么会重复编号,并且会占用后续的编号dense_rank(): 123445。如果遇到相同数据,那么会重复编号,但是不会占用后续的编号第二类: 聚合函数。count()、sum()、avg()、max()、min()....第三类: 取值函数。ntile()、lag()、lead()、first_value()、last_value()

示例:

use day09;
​
-- 创建表
create table pv_tb(cookieid string,datestr string,pv int
)row format delimited fields terminated by ',';
​
-- 导入数据
load data inpath '/dir/website_pv_info.txt' into table pv_tb;
​
-- 验证数据
select * from pv_tb;
​
-- 编号相关的窗口函数
selectcookieid,datestr,pv,-- row_number:用的最多。单调递增的进行编号,不管重复数据row_number() over(partition by cookieid order by pv asc) as rs1,-- rank:单调递增的进行编号,如果遇到重复数据,编号是相同,同时会占用后面的编号资格rank() over(partition by cookieid order by pv asc) as rs2,-- dense_rank:单调递增的进行编号,如果遇到重复数据,编号是相同,同时不会占用后面的编号资格dense_rank() over(partition by cookieid order by pv asc) as rs3
from pv_tb;
​
​
selectcookieid,datestr,pv,row_number() over(partition by cookieid order by pv asc) as rn,-- 如果有order by那么窗口的大小是慢慢逐渐放大的sum(pv) over(partition by cookieid order by pv asc) as sum_result,-- 如果没有order by那么窗口的大小直接彻底放大到最大sum(pv) over(partition by cookieid) as sum_result2
from pv_tb;

窗口的运行原理:

针对sum(pv) over(partition by cookieid order by pv asc) as sum_result语句

14.2 控制数据范围
开窗函数控制范围: rows between 范围开始 and 范围结束
​
具体的语法含义:1- 范围开始unbounded preceding: 从窗口开始数字 preceding: 前几行数据2- 范围结束unbounded following: 到窗口结束数字 following: 后几行数据3- 特殊的,既能够作为范围开始,也能够作为范围结束current row: 当前行

示例:

-- 控制窗口统计的数据范围
selectcookieid,datestr,pv,sum(pv) over(partition by cookieid order by pv rows between unbounded preceding and current row) as rs1,sum(pv) over(partition by cookieid order by pv rows between 2 preceding and current row) as rs2,sum(pv) over(partition by cookieid order by pv rows between unbounded preceding and unbounded following) as rs3,sum(pv) over(partition by cookieid order by pv rows between 2 preceding and unbounded following) as rs4,sum(pv) over(partition by cookieid order by pv rows between 2 preceding and 2 following) as rs5,sum(pv) over(partition by cookieid order by pv rows between current row and unbounded following) as rs6
from pv_tb;

14.3 其他开窗函数
ntile(n): 将窗口内的数据分配到n个桶里面去,返回的结果是桶的编号。可以使用在数据抽样中
​
lag: 取窗口中上一行的数据
lead: 取窗口中下一行的数据
​
first_value: 取窗口中第一行的数据
last_value : 取窗口中最后一行的数据

示例:

-- 其他函数
selectcookieid,datestr,pv,row_number() over(partition by cookieid order by pv asc) as rn,-- ntile(n):将窗口内的数据分配到n个桶里面去,返回的结果是桶的编号ntile(3) over(partition by cookieid order by pv asc) as rs1,-- 取窗口中上一行的数据lag(pv) over(partition by cookieid order by pv asc) as rs2,-- 取窗口中下一行的数据lead(pv) over(partition by cookieid order by pv asc) as rs3,-- 取窗口中第一行的数据first_value(pv) over(partition by cookieid order by pv asc) as rs4,-- 取窗口中最后一行的数据last_value(pv) over(partition by cookieid order by pv asc) as rs5
from pv_tb;

这篇关于摸鱼大数据——Hive函数14的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1027242

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

业务中14个需要进行A/B测试的时刻[信息图]

在本指南中,我们将全面了解有关 A/B测试 的所有内容。 我们将介绍不同类型的A/B测试,如何有效地规划和启动测试,如何评估测试是否成功,您应该关注哪些指标,多年来我们发现的常见错误等等。 什么是A/B测试? A/B测试(有时称为“分割测试”)是一种实验类型,其中您创建两种或多种内容变体——如登录页面、电子邮件或广告——并将它们显示给不同的受众群体,以查看哪一种效果最好。 本质上,A/B测

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X