Python中的元素相乘与矩阵相乘(附Demo)

2024-06-03 09:20
文章标签 python 元素 矩阵 demo 相乘

本文主要是介绍Python中的元素相乘与矩阵相乘(附Demo),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 前言
  • 1. 元素相乘
  • 2. 矩阵相乘
  • 3. 差异

前言

深度学习的矩阵相乘引发的Bug,由此深刻学习这方面的相关知识

在Python中,特别是使用NumPy库时,元素相乘和矩阵相乘是处理数组和矩阵时的常见操作

1. 元素相乘

元素相乘是指对两个相同形状的数组中的对应元素逐个相乘

multiply()函数可以实现这一操作,运算符*也可以用于元素相乘

import numpy as np# 定义两个数组
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])# 元素相乘
result = np.multiply(a, b)
print("元素相乘的结果(使用multiply()):", result)

截图如下:

在这里插入图片描述

import numpy as np# 定义两个数组
a = np.array([[1, 2, 3], [4, 5, 6]])
b = np.array([[7, 8, 9], [10, 11, 12]])# 元素相乘
result = a * b
print("元素相乘的结果(使用*运算符):\n", result)

截图如下:

在这里插入图片描述

2. 矩阵相乘

矩阵相乘遵循线性代数中的矩阵乘法规则,即结果矩阵的第(i, j)个元素是第一个矩阵的第i行与第二个矩阵的第j列对应元素的乘积之和

使用dot()函数、matmul()函数以及@运算符来进行矩阵相乘

dot():

import numpy as np# 定义两个矩阵
A = np.array([[1, 2], [3, 4]])
B = np.array([[5, 6], [7, 8]])# 矩阵相乘
result = np.dot(A, B)
print("矩阵相乘的结果(使用dot()):\n", result)

matmul():

import numpy as np# 定义两个矩阵
A = np.array([[1, 2], [3, 4]])
B = np.array([[5, 6], [7, 8]])# 矩阵相乘
result = np.matmul(A, B)
print("矩阵相乘的结果(使用matmul()):\n", result)

@:

import numpy as np# 定义两个矩阵
A = np.array([[1, 2], [3, 4]])
B = np.array([[5, 6], [7, 8]])# 矩阵相乘
result = A @ B
print("矩阵相乘的结果(使用@运算符):\n", result)

这三者截图都如下:

在这里插入图片描述

3. 差异

功能函数/运算符描述
元素相乘multiply()NumPy中的元素级乘法函数,接受任意数量的数组参数,并将它们的对应元素逐个相乘

*运算符也用于元素级乘法,其行为与multiply()函数相同
矩阵相乘dot()用于计算两个数组的点积(内积)。如果传入的参数是一维数组,则计算的是它们的标量积。如果传入的是二维数组(矩阵),则计算的是矩阵乘法

matmul()用于执行矩阵乘法。不支持一维数组的点积,而是将它们视为行或列向量进行矩阵相乘

@运算符Python 3.5及更高版本引入的矩阵乘法运算符。用于执行矩阵乘法

这篇关于Python中的元素相乘与矩阵相乘(附Demo)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1026585

相关文章

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地

利用python实现对excel文件进行加密

《利用python实现对excel文件进行加密》由于文件内容的私密性,需要对Excel文件进行加密,保护文件以免给第三方看到,本文将以Python语言为例,和大家讲讲如何对Excel文件进行加密,感兴... 目录前言方法一:使用pywin32库(仅限Windows)方法二:使用msoffcrypto-too

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

python获取网页表格的多种方法汇总

《python获取网页表格的多种方法汇总》我们在网页上看到很多的表格,如果要获取里面的数据或者转化成其他格式,就需要将表格获取下来并进行整理,在Python中,获取网页表格的方法有多种,下面就跟随小编... 目录1. 使用Pandas的read_html2. 使用BeautifulSoup和pandas3.

Python装饰器之类装饰器详解

《Python装饰器之类装饰器详解》本文将详细介绍Python中类装饰器的概念、使用方法以及应用场景,并通过一个综合详细的例子展示如何使用类装饰器,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录1. 引言2. 装饰器的基本概念2.1. 函数装饰器复习2.2 类装饰器的定义和使用3. 类装饰

Python 交互式可视化的利器Bokeh的使用

《Python交互式可视化的利器Bokeh的使用》Bokeh是一个专注于Web端交互式数据可视化的Python库,本文主要介绍了Python交互式可视化的利器Bokeh的使用,具有一定的参考价值,感... 目录1. Bokeh 简介1.1 为什么选择 Bokeh1.2 安装与环境配置2. Bokeh 基础2

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指