深度解析Go语言中的Slice切片

2024-06-03 05:20

本文主要是介绍深度解析Go语言中的Slice切片,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

深度解析Go语言中的Slice切片

  • 一、 简介
  • 二、数据结构
  • 三、初始化
  • 四、内容截取
  • 五、切片扩容
  • 六、元素删除
  • 七、切片拷贝


一、 简介

go中的切片,在某种程度上相当于别的语言中的“数组”。不同点在于切片的长度和容量是可变的,在使用过程中可以进行扩容。

二、数据结构

type slice struct {array unsafe.Pointerlen   intcap   int
}

这就是切片定义的底层源代码,非常简洁

array :指向切片引用的底层数组,由Go运行时使用unsafe.Pointer管理,允许切片中的任何类型元素。

len:这是切片的长度,代表它包含的元素数量。

cap:这是切片的容量,即在需要分配新的底层数组之前,切片可以容纳的元素的最大数量。

由此我们不难发现,切片内部如果储存数据,还是靠指向底层数组的指针实现的,所以,如果传递切片,那么进行的就是引用传递操作了

三、初始化

初始化可以有以下形式

	// 声明但不初始化var a []int// 基于 make 进行初始化 len = cap = 10b := make([]int, 10)// 基于 make 进行初始化 len = 10 cap = 20c := make([]int, 10, 20)// 直接赋值 len = cap = 10d := []int{1,2, 3, 4, 5, 6, 7, 8, 9, 10}

PS:

  1. cap 必须大于len,否则会报错
  2. 如果len<cap,则访问超出len的元素会报错——数组越界
  3. 指定长度但是并未赋值,此时数组长度内的元素全部为该类型的零值
  4. 只定义但未声明时,此时变量为空指针nil

源代码:

func makeslice(et *_type, len, cap int) unsafe.Pointer {mem, overflow := math.MulUintptr(et.Size_, uintptr(cap))if overflow || mem > maxAlloc || len < 0 || len > cap {// 注意:当有人使用make([]T, bignumber)时,产生'len超出范围'的错误,// 而不是'cap超出范围'的错误。'cap超出范围'也是对的,但由于cap只是隐式提供的,// 所以说len更清楚。// 参见 golang.org/issue/4085。mem, overflow := math.MulUintptr(et.Size_, uintptr(len))if overflow || mem > maxAlloc || len < 0 {panicmakeslicelen()}panicmakeslicecap()}return mallocgc(mem, et, true)
}

解释:

  • 用来计算所需内存的大小
mem, overflow := math.MulUintptr(et.Size_, uintptr(cap))
  • 检查是否有溢出、内存超限或无效的长度和容量
if overflow || mem > maxAlloc || len < 0 || len > cap
  • 内存超限就直接抛出错误
  • 调用mallocgc方法进行内存分配

四、内容截取

可以使用下面这种方式对切片进行内容截取

	s := []int{1, 2, 3, 4, 5, 6, 7, 8, 9}// s1: [2 3 4 5 6 7 8 9]s1 := s[1:]// s2: [1 2 3 4 5 6 7 8]s2 := s[:len(s)-1]// s3: [2 3 4 5 6 7 8]s3 := s[1 : len(s)-1]

PS:其实不管进行什么截取操作,本质上都没有创造新的数组,底层的数组仍然是初始的那一个没有变,只是改变了起始指针的位置,len以及cap的值。

五、切片扩容

func growslice(oldPtr unsafe.Pointer, newLen, oldCap, num int, et *_type) slice {oldLen := newLen - num// 如果启用了竞态检测,则进行内存读取范围检测if raceenabled {callerpc := getcallerpc()racereadrangepc(oldPtr, uintptr(oldLen*int(et.Size_)), callerpc, abi.FuncPCABIInternal(growslice))}// 如果启用了内存清理检测,则进行内存读取检测if msanenabled {msanread(oldPtr, uintptr(oldLen*int(et.Size_)))}// 如果启用了地址清理检测,则进行内存读取检测if asanenabled {asanread(oldPtr, uintptr(oldLen*int(et.Size_)))}// 如果新长度小于0,则抛出异常if newLen < 0 {panic(errorString("growslice: len out of range"))}// 如果元素类型的大小为0,则返回一个新的切片,其指针为nil,长度和容量为newLenif et.Size_ == 0 {return slice{unsafe.Pointer(&zerobase), newLen, newLen}}// 计算新的容量newcap := oldCapdoublecap := newcap + newcapif newLen > doublecap {newcap = newLen} else {const threshold = 256if oldCap < threshold {newcap = doublecap} else {for 0 < newcap && newcap < newLen {newcap += (newcap + 3*threshold) / 4}if newcap <= 0 {newcap = newLen}}}// 根据元素类型的大小,计算内存大小,并检查是否溢出var overflow boolvar lenmem, newlenmem, capmem uintptrswitch {case et.Size_ == 1:lenmem = uintptr(oldLen)newlenmem = uintptr(newLen)capmem = roundupsize(uintptr(newcap))overflow = uintptr(newcap) > maxAllocnewcap = int(capmem)case et.Size_ == goarch.PtrSize:lenmem = uintptr(oldLen) * goarch.PtrSizenewlenmem = uintptr(newLen) * goarch.PtrSizecapmem = roundupsize(uintptr(newcap) * goarch.PtrSize)overflow = uintptr(newcap) > maxAlloc/goarch.PtrSizenewcap = int(capmem / goarch.PtrSize)case isPowerOfTwo(et.Size_):var shift uintptrif goarch.PtrSize == 8 {shift = uintptr(sys.TrailingZeros64(uint64(et.Size_))) & 63} else {shift = uintptr(sys.TrailingZeros32(uint32(et.Size_))) & 31}lenmem = uintptr(oldLen) << shiftnewlenmem = uintptr(newLen) << shiftcapmem = roundupsize(uintptr(newcap) << shift)overflow = uintptr(newcap) > (maxAlloc >> shift)newcap = int(capmem >> shift)default:lenmem = uintptr(oldLen) * et.Size_newlenmem = uintptr(newLen) * et.Size_capmem, overflow = math.MulUintptr(et.Size_, uintptr(newcap))capmem = roundupsize(capmem)newcap = int(capmem / et.Size_)}// 检查是否溢出,以防止在32位架构上触发段错误if overflow || capmem > maxAlloc {panic(errorString("growslice: len out of range"))}// 分配内存,并根据情况清理内存var p unsafe.Pointerif et.PtrBytes == 0 {p = mallocgc(capmem, nil, false)memclrNoHeapPointers(add(p, newlenmem), capmem-newlenmem)} else {p = mallocgc(capmem, et, true)if lenmem > 0 && writeBarrier.enabled {bulkBarrierPreWriteSrcOnly(uintptr(p), uintptr(oldPtr), lenmem-et.Size_+et.PtrBytes)}}// 将旧切片的数据移动到新的内存位置memmove(p, oldPtr, lenmem)// 返回新的切片return slice{p, newLen, newcap}
}

主要包含以下内容:

  • 检查新长度是否合法,如果不合法则抛出异常。
  • 计算新的容量,如果新长度超过当前容量的两倍,则直接使用新长度作为新容量;否则,根据一定的规则逐步增加容量,直到满足需求。
  • 分配新的内存空间,并将旧切片的数据复制到新的内存空间。
  • 返回一个新的切片,其底层数组指向新分配的内存,长度和容量更新为新的值。
    PS :
    倘若老容量小于 256,则直接采用老容量的2倍作为新容量;倘若老容量已经大于等于 256,则在老容量的基础上扩容 1/4 的比例并且累加上 192 的数值,持续这样处理,直到得到的新容量已经大于等于预期的新容量为止

六、元素删除

删除其实本质上跟截取是一样的

	s := []int{0, 1, 2, 3, 4}// [1,2,3,4]s = s[1:]
	s := []int{0, 1, 2, 3, 4}// [0,1,2,3]s = s[0 : len(s)-1]

七、切片拷贝

切片拷贝有两种方式
一种是普通的简单拷贝,就是引用传递

s := []int{0, 1, 2, 3, 4}
s1 := s

另一种是深度拷贝,创建出一个和 slice 容量大小相等的独立的内存区域,并将原 slice 中的元素一一拷贝到新空间中

s := []int{0, 1, 2, 3, 4}
s1 := make([]int, len(s))
copy(s1, s)

这篇关于深度解析Go语言中的Slice切片的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1026106

相关文章

nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析(结合应用场景)

《nginx-t、nginx-sstop和nginx-sreload命令的详细解析(结合应用场景)》本文解析Nginx的-t、-sstop、-sreload命令,分别用于配置语法检... 以下是关于 nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析,结合实际应

MyBatis中$与#的区别解析

《MyBatis中$与#的区别解析》文章浏览阅读314次,点赞4次,收藏6次。MyBatis使用#{}作为参数占位符时,会创建预处理语句(PreparedStatement),并将参数值作为预处理语句... 目录一、介绍二、sql注入风险实例一、介绍#(井号):MyBATis使用#{}作为参数占位符时,会

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

go中的时间处理过程

《go中的时间处理过程》:本文主要介绍go中的时间处理过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1 获取当前时间2 获取当前时间戳3 获取当前时间的字符串格式4 相互转化4.1 时间戳转时间字符串 (int64 > string)4.2 时间字符串转时间

Go语言中make和new的区别及说明

《Go语言中make和new的区别及说明》:本文主要介绍Go语言中make和new的区别及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1 概述2 new 函数2.1 功能2.2 语法2.3 初始化案例3 make 函数3.1 功能3.2 语法3.3 初始化

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Go语言中nil判断的注意事项(最新推荐)

《Go语言中nil判断的注意事项(最新推荐)》本文给大家介绍Go语言中nil判断的注意事项,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.接口变量的特殊行为2.nil的合法类型3.nil值的实用行为4.自定义类型与nil5.反射判断nil6.函数返回的