深度解析Go语言中的Slice切片

2024-06-03 05:20

本文主要是介绍深度解析Go语言中的Slice切片,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

深度解析Go语言中的Slice切片

  • 一、 简介
  • 二、数据结构
  • 三、初始化
  • 四、内容截取
  • 五、切片扩容
  • 六、元素删除
  • 七、切片拷贝


一、 简介

go中的切片,在某种程度上相当于别的语言中的“数组”。不同点在于切片的长度和容量是可变的,在使用过程中可以进行扩容。

二、数据结构

type slice struct {array unsafe.Pointerlen   intcap   int
}

这就是切片定义的底层源代码,非常简洁

array :指向切片引用的底层数组,由Go运行时使用unsafe.Pointer管理,允许切片中的任何类型元素。

len:这是切片的长度,代表它包含的元素数量。

cap:这是切片的容量,即在需要分配新的底层数组之前,切片可以容纳的元素的最大数量。

由此我们不难发现,切片内部如果储存数据,还是靠指向底层数组的指针实现的,所以,如果传递切片,那么进行的就是引用传递操作了

三、初始化

初始化可以有以下形式

	// 声明但不初始化var a []int// 基于 make 进行初始化 len = cap = 10b := make([]int, 10)// 基于 make 进行初始化 len = 10 cap = 20c := make([]int, 10, 20)// 直接赋值 len = cap = 10d := []int{1,2, 3, 4, 5, 6, 7, 8, 9, 10}

PS:

  1. cap 必须大于len,否则会报错
  2. 如果len<cap,则访问超出len的元素会报错——数组越界
  3. 指定长度但是并未赋值,此时数组长度内的元素全部为该类型的零值
  4. 只定义但未声明时,此时变量为空指针nil

源代码:

func makeslice(et *_type, len, cap int) unsafe.Pointer {mem, overflow := math.MulUintptr(et.Size_, uintptr(cap))if overflow || mem > maxAlloc || len < 0 || len > cap {// 注意:当有人使用make([]T, bignumber)时,产生'len超出范围'的错误,// 而不是'cap超出范围'的错误。'cap超出范围'也是对的,但由于cap只是隐式提供的,// 所以说len更清楚。// 参见 golang.org/issue/4085。mem, overflow := math.MulUintptr(et.Size_, uintptr(len))if overflow || mem > maxAlloc || len < 0 {panicmakeslicelen()}panicmakeslicecap()}return mallocgc(mem, et, true)
}

解释:

  • 用来计算所需内存的大小
mem, overflow := math.MulUintptr(et.Size_, uintptr(cap))
  • 检查是否有溢出、内存超限或无效的长度和容量
if overflow || mem > maxAlloc || len < 0 || len > cap
  • 内存超限就直接抛出错误
  • 调用mallocgc方法进行内存分配

四、内容截取

可以使用下面这种方式对切片进行内容截取

	s := []int{1, 2, 3, 4, 5, 6, 7, 8, 9}// s1: [2 3 4 5 6 7 8 9]s1 := s[1:]// s2: [1 2 3 4 5 6 7 8]s2 := s[:len(s)-1]// s3: [2 3 4 5 6 7 8]s3 := s[1 : len(s)-1]

PS:其实不管进行什么截取操作,本质上都没有创造新的数组,底层的数组仍然是初始的那一个没有变,只是改变了起始指针的位置,len以及cap的值。

五、切片扩容

func growslice(oldPtr unsafe.Pointer, newLen, oldCap, num int, et *_type) slice {oldLen := newLen - num// 如果启用了竞态检测,则进行内存读取范围检测if raceenabled {callerpc := getcallerpc()racereadrangepc(oldPtr, uintptr(oldLen*int(et.Size_)), callerpc, abi.FuncPCABIInternal(growslice))}// 如果启用了内存清理检测,则进行内存读取检测if msanenabled {msanread(oldPtr, uintptr(oldLen*int(et.Size_)))}// 如果启用了地址清理检测,则进行内存读取检测if asanenabled {asanread(oldPtr, uintptr(oldLen*int(et.Size_)))}// 如果新长度小于0,则抛出异常if newLen < 0 {panic(errorString("growslice: len out of range"))}// 如果元素类型的大小为0,则返回一个新的切片,其指针为nil,长度和容量为newLenif et.Size_ == 0 {return slice{unsafe.Pointer(&zerobase), newLen, newLen}}// 计算新的容量newcap := oldCapdoublecap := newcap + newcapif newLen > doublecap {newcap = newLen} else {const threshold = 256if oldCap < threshold {newcap = doublecap} else {for 0 < newcap && newcap < newLen {newcap += (newcap + 3*threshold) / 4}if newcap <= 0 {newcap = newLen}}}// 根据元素类型的大小,计算内存大小,并检查是否溢出var overflow boolvar lenmem, newlenmem, capmem uintptrswitch {case et.Size_ == 1:lenmem = uintptr(oldLen)newlenmem = uintptr(newLen)capmem = roundupsize(uintptr(newcap))overflow = uintptr(newcap) > maxAllocnewcap = int(capmem)case et.Size_ == goarch.PtrSize:lenmem = uintptr(oldLen) * goarch.PtrSizenewlenmem = uintptr(newLen) * goarch.PtrSizecapmem = roundupsize(uintptr(newcap) * goarch.PtrSize)overflow = uintptr(newcap) > maxAlloc/goarch.PtrSizenewcap = int(capmem / goarch.PtrSize)case isPowerOfTwo(et.Size_):var shift uintptrif goarch.PtrSize == 8 {shift = uintptr(sys.TrailingZeros64(uint64(et.Size_))) & 63} else {shift = uintptr(sys.TrailingZeros32(uint32(et.Size_))) & 31}lenmem = uintptr(oldLen) << shiftnewlenmem = uintptr(newLen) << shiftcapmem = roundupsize(uintptr(newcap) << shift)overflow = uintptr(newcap) > (maxAlloc >> shift)newcap = int(capmem >> shift)default:lenmem = uintptr(oldLen) * et.Size_newlenmem = uintptr(newLen) * et.Size_capmem, overflow = math.MulUintptr(et.Size_, uintptr(newcap))capmem = roundupsize(capmem)newcap = int(capmem / et.Size_)}// 检查是否溢出,以防止在32位架构上触发段错误if overflow || capmem > maxAlloc {panic(errorString("growslice: len out of range"))}// 分配内存,并根据情况清理内存var p unsafe.Pointerif et.PtrBytes == 0 {p = mallocgc(capmem, nil, false)memclrNoHeapPointers(add(p, newlenmem), capmem-newlenmem)} else {p = mallocgc(capmem, et, true)if lenmem > 0 && writeBarrier.enabled {bulkBarrierPreWriteSrcOnly(uintptr(p), uintptr(oldPtr), lenmem-et.Size_+et.PtrBytes)}}// 将旧切片的数据移动到新的内存位置memmove(p, oldPtr, lenmem)// 返回新的切片return slice{p, newLen, newcap}
}

主要包含以下内容:

  • 检查新长度是否合法,如果不合法则抛出异常。
  • 计算新的容量,如果新长度超过当前容量的两倍,则直接使用新长度作为新容量;否则,根据一定的规则逐步增加容量,直到满足需求。
  • 分配新的内存空间,并将旧切片的数据复制到新的内存空间。
  • 返回一个新的切片,其底层数组指向新分配的内存,长度和容量更新为新的值。
    PS :
    倘若老容量小于 256,则直接采用老容量的2倍作为新容量;倘若老容量已经大于等于 256,则在老容量的基础上扩容 1/4 的比例并且累加上 192 的数值,持续这样处理,直到得到的新容量已经大于等于预期的新容量为止

六、元素删除

删除其实本质上跟截取是一样的

	s := []int{0, 1, 2, 3, 4}// [1,2,3,4]s = s[1:]
	s := []int{0, 1, 2, 3, 4}// [0,1,2,3]s = s[0 : len(s)-1]

七、切片拷贝

切片拷贝有两种方式
一种是普通的简单拷贝,就是引用传递

s := []int{0, 1, 2, 3, 4}
s1 := s

另一种是深度拷贝,创建出一个和 slice 容量大小相等的独立的内存区域,并将原 slice 中的元素一一拷贝到新空间中

s := []int{0, 1, 2, 3, 4}
s1 := make([]int, len(s))
copy(s1, s)

这篇关于深度解析Go语言中的Slice切片的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1026106

相关文章

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

C语言中位操作的实际应用举例

《C语言中位操作的实际应用举例》:本文主要介绍C语言中位操作的实际应用,总结了位操作的使用场景,并指出了需要注意的问题,如可读性、平台依赖性和溢出风险,文中通过代码介绍的非常详细,需要的朋友可以参... 目录1. 嵌入式系统与硬件寄存器操作2. 网络协议解析3. 图像处理与颜色编码4. 高效处理布尔标志集合

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

C 语言中enum枚举的定义和使用小结

《C语言中enum枚举的定义和使用小结》在C语言里,enum(枚举)是一种用户自定义的数据类型,它能够让你创建一组具名的整数常量,下面我会从定义、使用、特性等方面详细介绍enum,感兴趣的朋友一起看... 目录1、引言2、基本定义3、定义枚举变量4、自定义枚举常量的值5、枚举与switch语句结合使用6、枚

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

java解析jwt中的payload的用法

《java解析jwt中的payload的用法》:本文主要介绍java解析jwt中的payload的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java解析jwt中的payload1. 使用 jjwt 库步骤 1:添加依赖步骤 2:解析 JWT2. 使用 N

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

Java 正则表达式URL 匹配与源码全解析

《Java正则表达式URL匹配与源码全解析》在Web应用开发中,我们经常需要对URL进行格式验证,今天我们结合Java的Pattern和Matcher类,深入理解正则表达式在实际应用中... 目录1.正则表达式分解:2. 添加域名匹配 (2)3. 添加路径和查询参数匹配 (3) 4. 最终优化版本5.设计思