基于字典树可视化 COCA20000 词汇

2024-06-02 23:44

本文主要是介绍基于字典树可视化 COCA20000 词汇,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

COCA20000 是美国当代语料库中最常见的 20000 个词汇,不过实际上有一些重复,去重之后大概是 17600+ 个,这些单词是很有用,如果能掌握这些单词,相信会对英语的能力有一个较大的提升。我很早就下载了这些单词,并且自己编写了一个背单词的简易工具,如果有需要的同学,可以去看我的博客中搜索。今天这篇博客是利用字典树来堆单词的一个可视化。

字典树可视化词汇

下面就是一颗简单的 4 个单词的字典树,这个东西用来检索是很快的,这里我把最后的单词作为树的叶子节点。随着单词的不断增加,整个树也会不断的膨胀,不过这样就难以阅读了,所以我最终选择是把树的排列方向变成从又到右的形式。我之后要实现的字典树和下面这个没有什么本质的区别,只是更大一些而已,利用的数据就是 COCA 20000 的单词。

在这里插入图片描述

上面这个图形是使用 mermaid 绘制的,不过最终我采用的是 dot 语言(绘图指令就在下面),因为 mermaid 可能会遇到性能问题。实际上,dot 语言也是遇到了性能问题,因为单词实在是太多了,导致最后的图形太大了。我想了一些可能的优化措施,比如根据首字母来区分单词,这样的化加上大小写总共 52 个字母,可以把大的树分成 52 个小一点的树。不过,我也不是真的要去看这个树,所以就没有这样做。

在这里插入图片描述

代码处理

下面是全部的处理代码。

"""
字典树
目的是生成 COCA 单词的字典树,但是也可以用于其他单词或者词语(包括英语)。
"""
import jsonclass Node:"""字典树的一个节点,包含这个节点的值,以及它下面的节点,以及是否是一个单词的结尾。"""def __init__(self, val, is_end) -> None:self.val = valself.is_end = is_endself.children = {}def set_is_end(self) -> None:"""有些短的单词要重新设置,否则无法和长的区分开来,例如:are, area"""self.is_end = Trueclass DictTree:"""字典树"""def __init__(self):self.root = Node('/', False)self.stack = [] # 用来保存单词def append(self, word: str):"""向字典树中添加一个单词: 获取当前树的根节点:node = self.root遍历这个词的每一个字符 c,1. 如果该字符在当前树的子树中,则把当前树的子树指向当前树: node = node.children[c]如果当前字符 c 是最后一个字符,那么: node.is_end = True2. 如果该字符不在当前树的子树中,那么新建立一个节点,如果当前字符 c 是最后一个字符:is_end = True把它添加到当前树的子树中, node.children[c] = Node(c, is_end)"""node = self.rootfor i, c in enumerate(word):is_end = not i != len(word)-1if node.children.get(c):node = node.children[c]if is_end:node.set_is_end()else:node.children[c] = Node(c, is_end)node = node.children[c]def dumps(self) -> dict:"""序列化成字典对象"""return {"/": self.__dump(self.root)}def __dump(self, node: Node) -> dict:"""序列化成字典对象的内部方法,一个简单但是并不优雅的递归"""ret = {}self.stack.append(node.val)if not node.children:ret["word"] = "".join(self.stack[1:])for k, c in node.children.items():ret[k] = self.__dump(c)self.stack.pop()return ret# 生成dot描述
# 层序遍历 tips: 使用队列
def BFS_to_dot(tree) -> str:"""将树结构以层序遍历的方式转换为Dot语言表示的图形。Dot语言用于描述图形结构,本函数特别适用于将树结构可视化。:param tree: 输入的树结构,通常是一个字典或类似字典的对象,其中键值对表示节点及其子节点。:return: 返回一个表示树结构的Dot语言字符串。"""if not tree:returnqueue = [tree["/"]]          # 把树的根本身作为第一个节点加入队列count = 0                    # 子节点计数parent_count = 0             # 父节点计数parent_map = {0: "/"}        # 记录父节点序号和它的值nodes = ['n_0 [label="/"]']  # 点集edges = []                   # 边集while queue:node = queue.pop(0)if isinstance(node, dict):for val, child in node.items():queue.append(child)count += 1v = val if val != "word" else childparent_map[count] = vdot_node = f'n_{count} [label="{v}"]'dot_edge = f"n_{parent_count} -> n_{count};"nodes.append(dot_node)edges.append(dot_edge)parent_count += 1node_str = "\n".join(nodes)edge_str = "\n".join(edges)return f"digraph G {{\nrankdir=LR;\n{node_str};\n{edge_str}\n}}"if __name__ == "__main__":in_file = r"C:\Users\25735\Desktop\DragonEnglish\data\raw_txt\coca_no_order.txt"out_json_file = r"C:\Users\25735\Desktop\DragonEnglish\data\raw_txt\coca_dt_tree.json"out_dot_file = r"C:\Users\25735\Desktop\DragonEnglish\data\raw_txt\coca_dt_tree.dot"dt = DictTree()with open(in_file, "r", encoding="utf-8") as file:for word in [line.strip() for line in file.readlines()]:dt.append(word)dt_dumps = dt.dumps()# 序列化json写入with open(out_json_file, "w", encoding="utf-8") as file:json.dump(dt_dumps, file)# dot写入with open(out_dot_file, "w", encoding="utf-8") as file:file.write(BFS_to_dot(dt_dumps))print("EOF")

生成的文件
这里生成的 json 文件是压缩形式的,如果格式化的化,就超过 4m 了。
请添加图片描述

渲染图形

因为我安装了 graphviz 的插件,所以我直接在 VSCode 查看生成的 dot 文件时,它就在渲染了,不过渲染失败了。请添加图片描述

因为这个文件太大了,有十几万行(定义的节点就有几万个了)。

请添加图片描述

所以还是在本地来生成,我已经配置好了 graphviz 的环境了。一开始是生成的 png 格式,不过它提示分辨率有问题,因为节点太多了,导致生成的图形其实没法观看了。所以最终还是选择了 svg 和 pdf 格式,其中 pdf 格式生成的特别慢,至少是 20 分钟以上了。

请添加图片描述

生成的 svg 和 pdf

在这里插入图片描述

这两个文件的渲染都特别费劲,我的电脑打开有点吃力了。

请添加图片描述

请添加图片描述

对它的理解

如果是这 20000 个单词,它们的字母数是 150011 个,这是一个十分庞大的数字了。但是观察上面的字典树可以发现,其实有些单词是含有共同部分的,在计算的时候可以省去这部分,对于字典树来说就是计算其中的节点数就行了。因为我把完整的单词也算做节点了,所以要只计算单个字母的节点,这里我使用正则表达式来计算,最终的结果是: 54457 个。我觉得它对于我们记忆单词有一个很好的启示,那就是我们记忆单词并不是孤立的记忆每一个单词,每个单词之间是有联系的,随着记忆的单词越多,对于单词的掌握应该也是越来越熟悉的,但是太少了还是看不出来。而且这里只有前缀的联系,实际上还包括后缀的联系等。我会把这篇博客中产生的文件上传到 CSDN 中,如果有感兴趣的同学也可以自己下载体验。

请添加图片描述
请添加图片描述

这篇关于基于字典树可视化 COCA20000 词汇的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1025433

相关文章

Python中的可视化设计与UI界面实现

《Python中的可视化设计与UI界面实现》本文介绍了如何使用Python创建用户界面(UI),包括使用Tkinter、PyQt、Kivy等库进行基本窗口、动态图表和动画效果的实现,通过示例代码,展示... 目录从像素到界面:python带你玩转UI设计示例:使用Tkinter创建一个简单的窗口绘图魔法:用

python 字典d[k]中key不存在的解决方案

《python字典d[k]中key不存在的解决方案》本文主要介绍了在Python中处理字典键不存在时获取默认值的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录defaultdict:处理找不到的键的一个选择特殊方法__missing__有时候为了方便起见,

POJ2001字典树

给出n个单词,求出每个单词的非公共前缀,如果没有,则输出自己。 import java.io.BufferedReader;import java.io.InputStream;import java.io.InputStreamReader;import java.io.PrintWriter;import java.io.UnsupportedEncodingException;

Python:豆瓣电影商业数据分析-爬取全数据【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】

**爬取豆瓣电影信息,分析近年电影行业的发展情况** 本文是完整的数据分析展现,代码有完整版,包含豆瓣电影爬取的具体方式【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】   最近MBA在学习《商业数据分析》,大实训作业给了数据要进行数据分析,所以先拿豆瓣电影练练手,网络上爬取豆瓣电影TOP250较多,但对于豆瓣电影全数据的爬取教程很少,所以我自己做一版。 目

基于SSM+Vue+MySQL的可视化高校公寓管理系统

系统展示 管理员界面 宿管界面 学生界面 系统背景   当前社会各行业领域竞争压力非常大,随着当前时代的信息化,科学化发展,让社会各行业领域都争相使用新的信息技术,对行业内的各种相关数据进行科学化,规范化管理。这样的大环境让那些止步不前,不接受信息改革带来的信息技术的企业随时面临被淘汰,被取代的风险。所以当今,各个行业领域,不管是传统的教育行业

「大数据分析」图形可视化,如何选择大数据可视化图形?

​图形可视化技术,在大数据分析中,是一个非常重要的关键部分。我们前期通过数据获取,数据处理,数据分析,得出结果,这些过程都是比较抽象的。如果是非数据分析专业人员,很难清楚我们这些工作,到底做了些什么事情。即使是专业人员,在不清楚项目,不了解业务规则,不熟悉技术细节的情况下。要搞清楚我们的大数据分析,这一系列过程,也是比较困难的。 我们在数据处理和分析完成后,一般来说,都需要形成结论报告。怎样让大

11Python的Pandas:可视化

Pandas本身并没有直接的可视化功能,但它与其他Python库(如Matplotlib和Seaborn)无缝集成,允许你快速创建各种图表和可视化。这里是一些使用Pandas数据进行可视化的常见方法: 1. 使用Matplotlib Pandas中的plot()方法实际上是基于Matplotlib的,你可以使用它来绘制各种基本图表,例如折线图、柱状图、散点图等。 import pandas

【全网最全】2024年数学建模国赛A题30页完整建模文档+17页成品论文+保奖matla代码+可视化图表等(后续会更新)

您的点赞收藏是我继续更新的最大动力! 一定要点击如下的卡片,那是获取资料的入口! 【全网最全】2024年数学建模国赛A题30页完整建模文档+17页成品论文+保奖matla代码+可视化图表等(后续会更新)「首先来看看目前已有的资料,还会不断更新哦~一次购买,后续不会再被收费哦,保证是全网最全资源,随着后续内容更新,价格会上涨,越早购买,价格越低,让大家再也不需要到处买断片资料啦~💰💸👋」�

python 实现第k个字典排列算法

第k个字典排列算法介绍 "第k个字典排列"算法通常指的是在给定的字符集合(例如,字符串中的字符)中,找到所有可能排列的第k个排列。这个问题可以通过多种方法解决,但一个常见且高效的方法是使用“下一个排列”算法的变种,或称为“第k个排列”的直接算法。 方法一:使用“下一个排列”的变种 生成所有排列:首先生成所有排列,但显然这种方法对于较大的输入集合是不切实际的,因为它涉及到大量的计算和存储。 排序

Python利用pyecharts实现数据可视化

小编会持续更新知识笔记,如果感兴趣可以三连支持。闲来无事,水文一篇,不过上手实践一下倒还是挺好玩的,这一块知识说不定以后真可以尝试拿来做数据库的报表显示。         有梦别怕苦,想赢别喊累。 目录 前言 JSON数据格式的转换 pyecharts简介和入门使用 前言       小编我今天闲来无事,打算学习一下py,结果你猜怎么着,竟然看到py可以将数据