【Hive SQL 每日一题】统计指定范围内的有效下单用户

2024-06-02 22:12

本文主要是介绍【Hive SQL 每日一题】统计指定范围内的有效下单用户,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 测试数据
    • 需求说明
    • 需求实现

前言:本题制作参考牛客网进阶题目 —— SQL128 未完成试卷数大于1的有效用户

测试数据

-- 创建用户表
DROP TABLE IF EXISTS users;
CREATE TABLE users (user_id INT,name STRING,age INT,gender STRING,register_date STRING
);-- 插入用户数据
INSERT INTO users VALUES
(1, 'Alice', 23, 'F', '2023-01-01'),
(2, 'Bob', 22, 'M', '2023-02-01'),
(3, 'Cathy', 24, 'F', '2023-03-01'),
(4, 'David', 23, 'M', '2023-04-01'),
(5, 'Eve', 25, 'F', '2023-05-01'),
(6, 'Frank', 26, 'M', '2023-06-01'),
(7, 'Grace', 27, 'F', '2023-07-01'),
(8, 'Hank', 28, 'M', '2023-08-01'),
(9, 'Ivy', 29, 'F', '2023-09-01'),
(10, 'Jack', 30, 'M', '2023-10-01');-- 创建订单表
DROP TABLE IF EXISTS orders;
CREATE TABLE orders (order_id INT,user_id INT,product_id INT,order_date STRING,status STRING
);-- 插入订单数据
INSERT INTO orders VALUES
(101, 1, 1001, '2023-01-01', 'completed'),
(102, 1, 1002, '2023-01-01', 'pending'),
(103, 2, 1001, '2023-01-02', 'completed'),
(104, 3, 1001, '2023-01-03', 'pending'),
(105, 3, 1003, '2023-01-04', 'completed'),
(106, 4, 1002, '2023-01-02', 'completed'),
(107, 5, 1001, '2023-01-03', 'completed'),
(108, 5, 1002, '2023-01-04', 'pending'),
(109, 5, 1002, '2023-01-05', 'pending'),
(110, 5, 1003, '2023-01-06', 'pending'),
(111, 5, 1003, '2023-01-07', 'pending'),
(112, 6, 1001, '2023-01-08', 'completed'),
(113, 6, 1002, '2023-01-08', 'pending'),
(114, 6, 1003, '2023-01-08', 'pending'),
(115, 6, 1004, '2023-01-09', 'pending'),
(116, 6, 1005, '2023-01-10', 'completed'),
(117, 7, 1001, '2023-01-11', 'completed'),
(118, 7, 1002, '2023-01-11', 'pending'),
(119, 7, 1003, '2023-01-12', 'pending'),
(120, 7, 1004, '2023-01-12', 'pending'),
(121, 7, 1005, '2023-01-13', 'pending'),
(122, 8, 1001, '2023-01-14', 'completed'),
(123, 8, 1002, '2023-01-14', 'completed'),
(124, 8, 1003, '2023-01-15', 'completed'),
(125, 8, 1004, '2023-01-15', 'pending'),
(126, 8, 1005, '2023-01-16', 'pending'),
(127, 9, 1001, '2023-01-17', 'completed'),
(128, 9, 1002, '2023-01-17', 'completed'),
(129, 9, 1003, '2023-01-18', 'completed'),
(130, 9, 1004, '2023-01-18', 'completed'),
(131, 9, 1005, '2023-01-19', 'completed'),
(132, 10, 1001, '2023-01-20', 'pending'),
(133, 10, 1002, '2023-01-20', 'pending'),
(134, 10, 1003, '2023-01-21', 'pending'),
(135, 10, 1004, '2023-01-21', 'pending'),
(136, 10, 1005, '2023-01-22', 'pending');

需求说明

统计 2023 年每个有效用户的数据(有效用户指完成订单数至少为 1 且未完成订单数小于 5),输出用户ID、用户名称、未完成订单数、完成订单数、购买过的商品ID集合,按用户ID升序排列。

orders 表中的 status 列标识用户订单的状态,共有两种:

  • pending:未完成;

  • completed:已完成。

结果示例:

user_idnamepending_orderscompleted_ordersproduct_ids
1Alice11[“2023-01-01:1001”,“2023-01-01:1002”]
2Bob01[“2023-01-02:1001”]
3Cathy11[“2023-01-03:1001”,“2023-01-04:1003”]
4David01[“2023-01-02:1002”]
5Eve41[“2023-01-03:1001”,“2023-01-04:1002”,“2023-01-05:1002”,“2023-01-06:1003”,“2023-01-07:1003”]
6Frank32[“2023-01-08:1001”,“2023-01-08:1002”,“2023-01-08:1003”,“2023-01-09:1004”,“2023-01-10:1005”]
7Grace41[“2023-01-11:1001”,“2023-01-11:1002”,“2023-01-12:1003”,“2023-01-12:1004”,“2023-01-13:1005”]
8Hank23[“2023-01-14:1001”,“2023-01-14:1002”,“2023-01-15:1003”,“2023-01-15:1004”,“2023-01-16:1005”]
9Ivy05[“2023-01-17:1001”,“2023-01-17:1002”,“2023-01-18:1003”,“2023-01-18:1004”,“2023-01-19:1005”]

其中:

  • user_id:用户ID;
  • name:用户名;
  • pending_orders:未完成订单数;
  • completed_orders:完成订单数;
  • product_ids:每个用户下单的所有日期和产品ID组成的列表。

需求实现

selectu.user_id,name,pending_orders,completed_orders,product_ids
from(selectuser_id,sum(if(status = "pending",1,0)) pending_orders,sum(if(status = "completed",1,0)) completed_orders,collect_list(concat_ws(":",date_format(order_date,"yyyy-MM-dd"),cast(product_id as string))) product_idsfromorderswhereyear(order_date) = "2023"group byuser_id)t1joinusers uont1.user_id = u.user_id
wherecompleted_orders >= 1 and pending_orders < 5
order byu.user_id;

输出结果如下:

在这里插入图片描述

范围筛选统计的需求比较简单,只需要在分组的统计的时候进行判断即可。

本题稍有难度的地方在于,如何将各个用户的下单日期与对应的产品ID进行组合,形成列表,也就是列转行。

在 Hive 中列转行有两个函数:

  • collect_list:传入一个参数(字段),根据分组,对该字段进行聚合,形成列表;

  • collect_set:和上面一样,但它的不同之处在于,会对组合的列表数据进行去重操作。

在 MySQL 中并没有这两个函数,但是有和它们功能类似的函数 group_concat

GROUP_CONCAT(expr SEPARATOR sep)-- 示例
group_concat(start_day SEPARATOR ';')

其中,expr 表示要连接的表达式,可以是列名、常量或者更复杂的表达式。SEPARATOR sep 是一个可选参数,用于指定连接字符串的分隔符,默认为逗号。

这篇关于【Hive SQL 每日一题】统计指定范围内的有效下单用户的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1025227

相关文章

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的

MySQL中时区参数time_zone解读

《MySQL中时区参数time_zone解读》MySQL时区参数time_zone用于控制系统函数和字段的DEFAULTCURRENT_TIMESTAMP属性,修改时区可能会影响timestamp类型... 目录前言1.时区参数影响2.如何设置3.字段类型选择总结前言mysql 时区参数 time_zon

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

使用SQL语言查询多个Excel表格的操作方法

《使用SQL语言查询多个Excel表格的操作方法》本文介绍了如何使用SQL语言查询多个Excel表格,通过将所有Excel表格放入一个.xlsx文件中,并使用pandas和pandasql库进行读取和... 目录如何用SQL语言查询多个Excel表格如何使用sql查询excel内容1. 简介2. 实现思路3

Mysql DATETIME 毫秒坑的解决

《MysqlDATETIME毫秒坑的解决》本文主要介绍了MysqlDATETIME毫秒坑的解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 今天写代码突发一个诡异的 bug,代码逻辑大概如下。1. 新增退款单记录boolean save = s

通过C#获取PDF中指定文本或所有文本的字体信息

《通过C#获取PDF中指定文本或所有文本的字体信息》在设计和出版行业中,字体的选择和使用对最终作品的质量有着重要影响,然而,有时我们可能会遇到包含未知字体的PDF文件,这使得我们无法准确地复制或修改文... 目录引言C# 获取PDF中指定文本的字体信息C# 获取PDF文档中用到的所有字体信息引言在设计和出

mysql-8.0.30压缩包版安装和配置MySQL环境过程

《mysql-8.0.30压缩包版安装和配置MySQL环境过程》该文章介绍了如何在Windows系统中下载、安装和配置MySQL数据库,包括下载地址、解压文件、创建和配置my.ini文件、设置环境变量... 目录压缩包安装配置下载配置环境变量下载和初始化总结压缩包安装配置下载下载地址:https://d

MySQL中的锁和MVCC机制解读

《MySQL中的锁和MVCC机制解读》MySQL事务、锁和MVCC机制是确保数据库操作原子性、一致性和隔离性的关键,事务必须遵循ACID原则,锁的类型包括表级锁、行级锁和意向锁,MVCC通过非锁定读和... 目录mysql的锁和MVCC机制事务的概念与ACID特性锁的类型及其工作机制锁的粒度与性能影响多版本