CIFAR-10 数据转为图片-python

2024-06-02 15:36

本文主要是介绍CIFAR-10 数据转为图片-python,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • CIFAR-10 数据集
"""
CIFAR-10 是 32X32 的彩色图片,共有10个类别,每个类别6000张图片,50000张训练图片(均分为5个batch),10000张测试图片(每个类别选1000张)
将 CIFAR-10 转为 png
"""import os
import pickleimport numpy as np
from imageio import imwrite# 数据存放的根目录
base_dir = r'H:\DataStore'
# cifar-10 存放位置
data_dir = os.path.join(base_dir, 'cifar-10-batches-py')
# 训练图片目录
train_dir = os.path.join(base_dir, 'cifar-10-train-png')
# 测试图片目录
test_dir = os.path.join(base_dir, 'cifar-10-test-png')# 这里不进行训练图片的生成
Train = False
Test = True# 反序列化
def unpickle(file_path):with open(file_path, 'rb') as f:_obj = pickle.load(f, encoding='bytes')return _obj# 目录不存在时创建一个
def create_dir(dir_path):if not os.path.isdir(dir_path):os.makedirs(dir_path)def get_label_names():_label_names_obj = unpickle(os.path.join(data_dir, 'batches.meta'))return _label_names_obj[b'label_names']def save_images(i, obj, class_num, label_names, dir_path):# 红、绿、蓝 (channel, width, height)# 一定要使用 b'' 的方式,因为 obj 是 bytes 编码的img = np.reshape(obj[b'data'][i], (3, 32, 32))# 保存为图片使用 (width, height, channel) 格式img = img.transpose(1, 2, 0)# 获取当前图片的类别下标 0-9label_idx = obj[b'labels'][i]# 获取当前图片的名称_label_name: str = label_names[label_idx].decode()train_dir_label_name_path = os.path.join(dir_path, _label_name)create_dir(train_dir_label_name_path)# 图片对应的类别数量+1class_num[label_idx] += 1_image_name = str(class_num[label_idx]) + '.png'image_path = os.path.join(train_dir_label_name_path, _image_name)# 写入图片imwrite(image_path, img)if __name__ == '__main__':_label_names = get_label_names()if Train:# 累计每个类别的数量train_class_num = [0] * 10for i in range(1, 6):data_batch_path = os.path.join(data_dir, 'data_batch_' + str(i))# k: data、labelstrain_batch_obj = unpickle(data_batch_path)print("{} is loading...".format(data_batch_path))# 每个batch中有10000张图片for j in range(0, 10000):save_images(j, train_batch_obj, train_class_num, _label_names, train_dir)print('train loaded')if Test:test_class_num = [0] * 10test_data_path = os.path.join(data_dir, 'test_batch')test_obj = unpickle(test_data_path)for i in range(10000):save_images(i, test_obj, test_class_num, _label_names, test_dir)print('test loaded')

这篇关于CIFAR-10 数据转为图片-python的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1024369

相关文章

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局

Python中4大日志记录库比较的终极PK

《Python中4大日志记录库比较的终极PK》日志记录框架是一种工具,可帮助您标准化应用程序中的日志记录过程,:本文主要介绍Python中4大日志记录库比较的相关资料,文中通过代码介绍的非常详细,... 目录一、logging库1、优点2、缺点二、LogAid库三、Loguru库四、Structlogphp

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

Java使用Spire.Doc for Java实现Word自动化插入图片

《Java使用Spire.DocforJava实现Word自动化插入图片》在日常工作中,Word文档是不可或缺的工具,而图片作为信息传达的重要载体,其在文档中的插入与布局显得尤为关键,下面我们就来... 目录1. Spire.Doc for Java库介绍与安装2. 使用特定的环绕方式插入图片3. 在指定位

C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解

《C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解》:本文主要介绍C++,C#,Rust,Go,Java,Python,JavaScript性能对比全面... 目录编程语言性能对比、核心优势与最佳使用场景性能对比表格C++C#RustGoJavapythonjav

Python海象运算符:=的具体实现

《Python海象运算符:=的具体实现》海象运算符又称​​赋值表达式,Python3.8后可用,其核心设计是在表达式内部完成变量赋值并返回该值,从而简化代码逻辑,下面就来详细的介绍一下如何使用,感兴趣... 目录简介​​条件判断优化循环控制简化​推导式高效计算​正则匹配与数据提取​性能对比简介海象运算符