hive中count(distinct) 的原理

2024-06-02 15:18
文章标签 原理 hive count distinct

本文主要是介绍hive中count(distinct) 的原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • count(distinct id)的原理
  • count(distinct id)的解决方案

 


参考博客:

https://blog.csdn.net/oracle8090/article/details/80760233

 

回到顶部

count(distinct id)的原理

count(distinct id)从执行计划上面来看:只有一个reducer任务(即使你设置reducer任务为100个,实际上也没有用),所有的id都

会聚集到同一个reducer任务进行去重然后在聚合,这非常容易造成数据倾斜.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

STAGE DEPENDENCIES:

  Stage-1 is a root stage

  Stage-0 depends on stages: Stage-1

 

STAGE PLANS:

  Stage: Stage-1

    Map Reduce

      Map Operator Tree:

          TableScan

            alias: emp_ct

            Statistics: Num rows: 42 Data size: 171 Basic stats: COMPLETE Column stats: NONE

            Select Operator

              expressions: dept_num (type: int)

              outputColumnNames: _col0

              Statistics: Num rows: 42 Data size: 171 Basic stats: COMPLETE Column stats: NONE

              Reduce Output Operator

                key expressions: _col0 (type: int)

                sort order: +

                Statistics: Num rows: 42 Data size: 171 Basic stats: COMPLETE Column stats: NONE

      Reduce Operator Tree:

        Group By Operator

          aggregations: count(DISTINCT KEY._col0:0._col0)

          mode: complete

          outputColumnNames: _col0

          Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: NONE

          File Output Operator

            compressed: false

            Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: NONE

            table:

                input format: org.apache.hadoop.mapred.TextInputFormat

                output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat

                serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe

 

  Stage: Stage-0

    Fetch Operator

      limit: -1

      Processor Tree:

        ListSink

  

运行示例:注意设置的reducer任务数量实际上是不生效的。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

hive> set mapreduce.job.reduces=5;

hive>

    select count(distinct dept_num)

    from emp_ct;

Query ID = mart_fro_20200320233947_4f60c190-4967-4da6-bf3e-97db786fbc6c

Total jobs = 1

Launching Job 1 out of 1

Number of reduce tasks determined at compile time: 1

In order to change the average load for a reducer (in bytes):

  set hive.exec.reducers.bytes.per.reducer=<number>

In order to limit the maximum number of reducers:

  set hive.exec.reducers.max=<number>

In order to set a constant number of reducers:

  set mapreduce.job.reduces=<number>

Start submit job !

Start GetSplits

GetSplits finish, it costs : 32 milliseconds

Submit job success : job_1584341089622_358496

Starting Job = job_1584341089622_358496, Tracking URL = http://BJHTYD-Hope-25-11.hadoop.jd.local:50320/proxy/application_1584341089622_358496/

Kill Command = /data0/hadoop/hadoop_2.100.31_2019090518/bin/hadoop job  -kill job_1584341089622_358496

Hadoop job(job_1584341089622_358496) information for Stage-1: number of mappers: 2; number of reducers: 1

2020-03-20 23:39:58,215 Stage-1(job_1584341089622_358496) map = 0%,  reduce = 0%

2020-03-20 23:40:09,628 Stage-1(job_1584341089622_358496) map = 50%,  reduce = 0%, Cumulative CPU 2.74 sec

2020-03-20 23:40:16,849 Stage-1(job_1584341089622_358496) map = 100%,  reduce = 0%, Cumulative CPU 7.43 sec

2020-03-20 23:40:29,220 Stage-1(job_1584341089622_358496) map = 100%,  reduce = 100%, Cumulative CPU 10.64 sec

MapReduce Total cumulative CPU time: 10 seconds 640 msec

Stage-1  Elapsed : 40533 ms  job_1584341089622_358496

Ended Job = job_1584341089622_358496

MapReduce Jobs Launched:

Stage-1: Map: 2  Reduce: 1   Cumulative CPU: 10.64 sec   HDFS Read: 0.000 GB HDFS Write: 0.000 GB SUCCESS  Elapsed : 40s533ms job_1584341089622_358496

 

Total MapReduce CPU Time Spent: 10s640ms

Total Map: 2  Total Reduce: 1

Total HDFS Read: 0.000 GB  Written: 0.000 GB

OK

3

Time taken: 43.025 seconds, Fetched: 1 row(s)

  

回到顶部

count(distinct id)的解决方案

该怎么解决这个问题呢?实际上解决方法非常巧妙:

我们利用Hive对嵌套语句的支持,将原来一个MapReduce作业转换为两个作业,在第一阶段选出全部的非重复id,在第二阶段再对

这些已消重的id进行计数。这样在第一阶段我们可以通过增大Reduce的并发数,并发处理Map输出。在第二阶段,由于id已经消重,

因此COUNT(*)操作在Map阶段不需要输出原id数据,只输出一个合并后的计数即可。这样即使第二阶段Hive强制指定一个Reduce Task,

极少量的Map输出数据也不会使单一的Reduce Task成为瓶颈。改进后的SQL语句如下:

查看一下执行计划:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

STAGE DEPENDENCIES:

  Stage-1 is a root stage

  Stage-2 depends on stages: Stage-1

  Stage-0 depends on stages: Stage-2

 

STAGE PLANS:

  Stage: Stage-1

    Map Reduce

      Map Operator Tree:

          TableScan

            alias: emp_ct

            Statistics: Num rows: 42 Data size: 171 Basic stats: COMPLETE Column stats: NONE

            Select Operator

              expressions: dept_num (type: int)

              outputColumnNames: dept_num

              Statistics: Num rows: 42 Data size: 171 Basic stats: COMPLETE Column stats: NONE

              Reduce Output Operator

                key expressions: dept_num (type: int)

                sort order: +

                Map-reduce partition columns: dept_num (type: int)

                Statistics: Num rows: 42 Data size: 171 Basic stats: COMPLETE Column stats: NONE

      Reduce Operator Tree:

        Group By Operator

          keys: KEY._col0 (type: int)

          mode: complete

          outputColumnNames: _col0

          Statistics: Num rows: 21 Data size: 85 Basic stats: COMPLETE Column stats: NONE

          File Output Operator

            compressed: false

            table:

                input format: org.apache.hadoop.mapred.SequenceFileInputFormat

                output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat

                serde: org.apache.hadoop.hive.serde2.lazybinary.LazyBinarySerDe

 

  Stage: Stage-2

    Map Reduce

      Map Operator Tree:

          TableScan

            Reduce Output Operator

              sort order:

              Statistics: Num rows: 21 Data size: 85 Basic stats: COMPLETE Column stats: NONE

              value expressions: _col0 (type: int)

      Reduce Operator Tree:

        Group By Operator

          aggregations: count(VALUE._col0)

          mode: complete

          outputColumnNames: _col0

          Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: NONE

          File Output Operator

            compressed: false

            Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: NONE

            table:

                input format: org.apache.hadoop.mapred.TextInputFormat

                output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat

                serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe

 

  Stage: Stage-0

    Fetch Operator

      limit: -1

      Processor Tree:

        ListSink

具体看一下执行结果:注意看reducer任务的数量,第一个reducer任务是5个,第二个是1个.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

hive> set mapreduce.job.reduces=5;

hive>

    select count(dept_num)

    from (

    >        select distinct dept_num

    >        from emp_ct

    >        ) t1;

Query ID = mart_fro_20200320234453_68ad3780-c3e5-44bc-94df-58a8f2b01f59

Total jobs = 2

Launching Job 1 out of 2

Number of reduce tasks not specified. Defaulting to jobconf value of: 5

In order to change the average load for a reducer (in bytes):

  set hive.exec.reducers.bytes.per.reducer=<number>

In order to limit the maximum number of reducers:

  set hive.exec.reducers.max=<number>

In order to set a constant number of reducers:

  set mapreduce.job.reduces=<number>

Start submit job !

Start GetSplits

GetSplits finish, it costs : 13 milliseconds

Submit job success : job_1584341089622_358684

Starting Job = job_1584341089622_358684, Tracking URL = http://BJHTYD-Hope-25-11.hadoop.jd.local:50320/proxy/application_1584341089622_358684/

Kill Command = /data0/hadoop/hadoop_2.100.31_2019090518/bin/hadoop job  -kill job_1584341089622_358684

Hadoop job(job_1584341089622_358684) information for Stage-1: number of mappers: 2; number of reducers: 5

2020-03-20 23:45:02,920 Stage-1(job_1584341089622_358684) map = 0%,  reduce = 0%

2020-03-20 23:45:23,533 Stage-1(job_1584341089622_358684) map = 50%,  reduce = 0%, Cumulative CPU 3.48 sec

2020-03-20 23:45:25,596 Stage-1(job_1584341089622_358684) map = 100%,  reduce = 0%, Cumulative CPU 7.08 sec

2020-03-20 23:45:32,804 Stage-1(job_1584341089622_358684) map = 100%,  reduce = 20%, Cumulative CPU 9.43 sec

2020-03-20 23:45:34,861 Stage-1(job_1584341089622_358684) map = 100%,  reduce = 40%, Cumulative CPU 12.39 sec

2020-03-20 23:45:36,923 Stage-1(job_1584341089622_358684) map = 100%,  reduce = 80%, Cumulative CPU 18.47 sec

2020-03-20 23:45:40,011 Stage-1(job_1584341089622_358684) map = 100%,  reduce = 100%, Cumulative CPU 23.23 sec

MapReduce Total cumulative CPU time: 23 seconds 230 msec

Stage-1  Elapsed : 46404 ms  job_1584341089622_358684

Ended Job = job_1584341089622_358684

Launching Job 2 out of 2

Number of reduce tasks determined at compile time: 1

In order to change the average load for a reducer (in bytes):

  set hive.exec.reducers.bytes.per.reducer=<number>

In order to limit the maximum number of reducers:

  set hive.exec.reducers.max=<number>

In order to set a constant number of reducers:

  set mapreduce.job.reduces=<number>

Start submit job !

Start GetSplits

GetSplits finish, it costs : 47 milliseconds

Submit job success : job_1584341089622_358729

Starting Job = job_1584341089622_358729, Tracking URL = http://BJHTYD-Hope-25-11.hadoop.jd.local:50320/proxy/application_1584341089622_358729/

Kill Command = /data0/hadoop/hadoop_2.100.31_2019090518/bin/hadoop job  -kill job_1584341089622_358729

Hadoop job(job_1584341089622_358729) information for Stage-2: number of mappers: 5; number of reducers: 1

2020-03-20 23:45:48,353 Stage-2(job_1584341089622_358729) map = 0%,  reduce = 0%

2020-03-20 23:46:05,846 Stage-2(job_1584341089622_358729) map = 20%,  reduce = 0%, Cumulative CPU 2.62 sec

2020-03-20 23:46:06,873 Stage-2(job_1584341089622_358729) map = 60%,  reduce = 0%, Cumulative CPU 8.49 sec

2020-03-20 23:46:08,931 Stage-2(job_1584341089622_358729) map = 80%,  reduce = 0%, Cumulative CPU 11.53 sec

2020-03-20 23:46:09,960 Stage-2(job_1584341089622_358729) map = 100%,  reduce = 0%, Cumulative CPU 15.23 sec

2020-03-20 23:46:35,639 Stage-2(job_1584341089622_358729) map = 100%,  reduce = 100%, Cumulative CPU 20.37 sec

MapReduce Total cumulative CPU time: 20 seconds 370 msec

Stage-2  Elapsed : 54552 ms  job_1584341089622_358729

Ended Job = job_1584341089622_358729

MapReduce Jobs Launched:

Stage-1: Map: 2  Reduce: 5   Cumulative CPU: 23.23 sec   HDFS Read: 0.000 GB HDFS Write: 0.000 GB SUCCESS  Elapsed : 46s404ms job_1584341089622_358684

 

Stage-2: Map: 5  Reduce: 1   Cumulative CPU: 20.37 sec   HDFS Read: 0.000 GB HDFS Write: 0.000 GB SUCCESS  Elapsed : 54s552ms job_1584341089622_358729

 

Total MapReduce CPU Time Spent: 43s600ms

Total Map: 7  Total Reduce: 6

Total HDFS Read: 0.000 GB  Written: 0.000 GB

OK

3

Time taken: 103.692 seconds, Fetched: 1 row(s)

  

这个解决方案有点类似于set hive.groupby.skew.indata参数的作用!

实际测试:

1

2

3

4

5

6

7

8

9

select count(distinct dept_num)

from emp_ct

 

   

select count(*)

from (

    select distinct dept_num

    from emp_ct

)

这篇关于hive中count(distinct) 的原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1024329

相关文章

Spring Boot Interceptor的原理、配置、顺序控制及与Filter的关键区别对比分析

《SpringBootInterceptor的原理、配置、顺序控制及与Filter的关键区别对比分析》本文主要介绍了SpringBoot中的拦截器(Interceptor)及其与过滤器(Filt... 目录前言一、核心功能二、拦截器的实现2.1 定义自定义拦截器2.2 注册拦截器三、多拦截器的执行顺序四、过

Java 队列Queue从原理到实战指南

《Java队列Queue从原理到实战指南》本文介绍了Java中队列(Queue)的底层实现、常见方法及其区别,通过LinkedList和ArrayDeque的实现,以及循环队列的概念,展示了如何高效... 目录一、队列的认识队列的底层与集合框架常见的队列方法插入元素方法对比(add和offer)移除元素方法

SQL 注入攻击(SQL Injection)原理、利用方式与防御策略深度解析

《SQL注入攻击(SQLInjection)原理、利用方式与防御策略深度解析》本文将从SQL注入的基本原理、攻击方式、常见利用手法,到企业级防御方案进行全面讲解,以帮助开发者和安全人员更系统地理解... 目录一、前言二、SQL 注入攻击的基本概念三、SQL 注入常见类型分析1. 基于错误回显的注入(Erro

Spring IOC核心原理详解与运用实战教程

《SpringIOC核心原理详解与运用实战教程》本文详细解析了SpringIOC容器的核心原理,包括BeanFactory体系、依赖注入机制、循环依赖解决和三级缓存机制,同时,介绍了SpringBo... 目录1. Spring IOC核心原理深度解析1.1 BeanFactory体系与内部结构1.1.1

MySQL 批量插入的原理和实战方法(快速提升大数据导入效率)

《MySQL批量插入的原理和实战方法(快速提升大数据导入效率)》在日常开发中,我们经常需要将大量数据批量插入到MySQL数据库中,本文将介绍批量插入的原理、实现方法,并结合Python和PyMySQ... 目录一、批量插入的优势二、mysql 表的创建示例三、python 实现批量插入1. 安装 PyMyS

深入理解Redis线程模型的原理及使用

《深入理解Redis线程模型的原理及使用》Redis的线程模型整体还是多线程的,只是后台执行指令的核心线程是单线程的,整个线程模型可以理解为还是以单线程为主,基于这种单线程为主的线程模型,不同客户端的... 目录1 Redis是单线程www.chinasem.cn还是多线程2 Redis如何保证指令原子性2.

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三