hive中count(distinct) 的原理

2024-06-02 15:18
文章标签 原理 hive count distinct

本文主要是介绍hive中count(distinct) 的原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • count(distinct id)的原理
  • count(distinct id)的解决方案

 


参考博客:

https://blog.csdn.net/oracle8090/article/details/80760233

 

回到顶部

count(distinct id)的原理

count(distinct id)从执行计划上面来看:只有一个reducer任务(即使你设置reducer任务为100个,实际上也没有用),所有的id都

会聚集到同一个reducer任务进行去重然后在聚合,这非常容易造成数据倾斜.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

STAGE DEPENDENCIES:

  Stage-1 is a root stage

  Stage-0 depends on stages: Stage-1

 

STAGE PLANS:

  Stage: Stage-1

    Map Reduce

      Map Operator Tree:

          TableScan

            alias: emp_ct

            Statistics: Num rows: 42 Data size: 171 Basic stats: COMPLETE Column stats: NONE

            Select Operator

              expressions: dept_num (type: int)

              outputColumnNames: _col0

              Statistics: Num rows: 42 Data size: 171 Basic stats: COMPLETE Column stats: NONE

              Reduce Output Operator

                key expressions: _col0 (type: int)

                sort order: +

                Statistics: Num rows: 42 Data size: 171 Basic stats: COMPLETE Column stats: NONE

      Reduce Operator Tree:

        Group By Operator

          aggregations: count(DISTINCT KEY._col0:0._col0)

          mode: complete

          outputColumnNames: _col0

          Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: NONE

          File Output Operator

            compressed: false

            Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: NONE

            table:

                input format: org.apache.hadoop.mapred.TextInputFormat

                output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat

                serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe

 

  Stage: Stage-0

    Fetch Operator

      limit: -1

      Processor Tree:

        ListSink

  

运行示例:注意设置的reducer任务数量实际上是不生效的。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

hive> set mapreduce.job.reduces=5;

hive>

    select count(distinct dept_num)

    from emp_ct;

Query ID = mart_fro_20200320233947_4f60c190-4967-4da6-bf3e-97db786fbc6c

Total jobs = 1

Launching Job 1 out of 1

Number of reduce tasks determined at compile time: 1

In order to change the average load for a reducer (in bytes):

  set hive.exec.reducers.bytes.per.reducer=<number>

In order to limit the maximum number of reducers:

  set hive.exec.reducers.max=<number>

In order to set a constant number of reducers:

  set mapreduce.job.reduces=<number>

Start submit job !

Start GetSplits

GetSplits finish, it costs : 32 milliseconds

Submit job success : job_1584341089622_358496

Starting Job = job_1584341089622_358496, Tracking URL = http://BJHTYD-Hope-25-11.hadoop.jd.local:50320/proxy/application_1584341089622_358496/

Kill Command = /data0/hadoop/hadoop_2.100.31_2019090518/bin/hadoop job  -kill job_1584341089622_358496

Hadoop job(job_1584341089622_358496) information for Stage-1: number of mappers: 2; number of reducers: 1

2020-03-20 23:39:58,215 Stage-1(job_1584341089622_358496) map = 0%,  reduce = 0%

2020-03-20 23:40:09,628 Stage-1(job_1584341089622_358496) map = 50%,  reduce = 0%, Cumulative CPU 2.74 sec

2020-03-20 23:40:16,849 Stage-1(job_1584341089622_358496) map = 100%,  reduce = 0%, Cumulative CPU 7.43 sec

2020-03-20 23:40:29,220 Stage-1(job_1584341089622_358496) map = 100%,  reduce = 100%, Cumulative CPU 10.64 sec

MapReduce Total cumulative CPU time: 10 seconds 640 msec

Stage-1  Elapsed : 40533 ms  job_1584341089622_358496

Ended Job = job_1584341089622_358496

MapReduce Jobs Launched:

Stage-1: Map: 2  Reduce: 1   Cumulative CPU: 10.64 sec   HDFS Read: 0.000 GB HDFS Write: 0.000 GB SUCCESS  Elapsed : 40s533ms job_1584341089622_358496

 

Total MapReduce CPU Time Spent: 10s640ms

Total Map: 2  Total Reduce: 1

Total HDFS Read: 0.000 GB  Written: 0.000 GB

OK

3

Time taken: 43.025 seconds, Fetched: 1 row(s)

  

回到顶部

count(distinct id)的解决方案

该怎么解决这个问题呢?实际上解决方法非常巧妙:

我们利用Hive对嵌套语句的支持,将原来一个MapReduce作业转换为两个作业,在第一阶段选出全部的非重复id,在第二阶段再对

这些已消重的id进行计数。这样在第一阶段我们可以通过增大Reduce的并发数,并发处理Map输出。在第二阶段,由于id已经消重,

因此COUNT(*)操作在Map阶段不需要输出原id数据,只输出一个合并后的计数即可。这样即使第二阶段Hive强制指定一个Reduce Task,

极少量的Map输出数据也不会使单一的Reduce Task成为瓶颈。改进后的SQL语句如下:

查看一下执行计划:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

STAGE DEPENDENCIES:

  Stage-1 is a root stage

  Stage-2 depends on stages: Stage-1

  Stage-0 depends on stages: Stage-2

 

STAGE PLANS:

  Stage: Stage-1

    Map Reduce

      Map Operator Tree:

          TableScan

            alias: emp_ct

            Statistics: Num rows: 42 Data size: 171 Basic stats: COMPLETE Column stats: NONE

            Select Operator

              expressions: dept_num (type: int)

              outputColumnNames: dept_num

              Statistics: Num rows: 42 Data size: 171 Basic stats: COMPLETE Column stats: NONE

              Reduce Output Operator

                key expressions: dept_num (type: int)

                sort order: +

                Map-reduce partition columns: dept_num (type: int)

                Statistics: Num rows: 42 Data size: 171 Basic stats: COMPLETE Column stats: NONE

      Reduce Operator Tree:

        Group By Operator

          keys: KEY._col0 (type: int)

          mode: complete

          outputColumnNames: _col0

          Statistics: Num rows: 21 Data size: 85 Basic stats: COMPLETE Column stats: NONE

          File Output Operator

            compressed: false

            table:

                input format: org.apache.hadoop.mapred.SequenceFileInputFormat

                output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat

                serde: org.apache.hadoop.hive.serde2.lazybinary.LazyBinarySerDe

 

  Stage: Stage-2

    Map Reduce

      Map Operator Tree:

          TableScan

            Reduce Output Operator

              sort order:

              Statistics: Num rows: 21 Data size: 85 Basic stats: COMPLETE Column stats: NONE

              value expressions: _col0 (type: int)

      Reduce Operator Tree:

        Group By Operator

          aggregations: count(VALUE._col0)

          mode: complete

          outputColumnNames: _col0

          Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: NONE

          File Output Operator

            compressed: false

            Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: NONE

            table:

                input format: org.apache.hadoop.mapred.TextInputFormat

                output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat

                serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe

 

  Stage: Stage-0

    Fetch Operator

      limit: -1

      Processor Tree:

        ListSink

具体看一下执行结果:注意看reducer任务的数量,第一个reducer任务是5个,第二个是1个.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

hive> set mapreduce.job.reduces=5;

hive>

    select count(dept_num)

    from (

    >        select distinct dept_num

    >        from emp_ct

    >        ) t1;

Query ID = mart_fro_20200320234453_68ad3780-c3e5-44bc-94df-58a8f2b01f59

Total jobs = 2

Launching Job 1 out of 2

Number of reduce tasks not specified. Defaulting to jobconf value of: 5

In order to change the average load for a reducer (in bytes):

  set hive.exec.reducers.bytes.per.reducer=<number>

In order to limit the maximum number of reducers:

  set hive.exec.reducers.max=<number>

In order to set a constant number of reducers:

  set mapreduce.job.reduces=<number>

Start submit job !

Start GetSplits

GetSplits finish, it costs : 13 milliseconds

Submit job success : job_1584341089622_358684

Starting Job = job_1584341089622_358684, Tracking URL = http://BJHTYD-Hope-25-11.hadoop.jd.local:50320/proxy/application_1584341089622_358684/

Kill Command = /data0/hadoop/hadoop_2.100.31_2019090518/bin/hadoop job  -kill job_1584341089622_358684

Hadoop job(job_1584341089622_358684) information for Stage-1: number of mappers: 2; number of reducers: 5

2020-03-20 23:45:02,920 Stage-1(job_1584341089622_358684) map = 0%,  reduce = 0%

2020-03-20 23:45:23,533 Stage-1(job_1584341089622_358684) map = 50%,  reduce = 0%, Cumulative CPU 3.48 sec

2020-03-20 23:45:25,596 Stage-1(job_1584341089622_358684) map = 100%,  reduce = 0%, Cumulative CPU 7.08 sec

2020-03-20 23:45:32,804 Stage-1(job_1584341089622_358684) map = 100%,  reduce = 20%, Cumulative CPU 9.43 sec

2020-03-20 23:45:34,861 Stage-1(job_1584341089622_358684) map = 100%,  reduce = 40%, Cumulative CPU 12.39 sec

2020-03-20 23:45:36,923 Stage-1(job_1584341089622_358684) map = 100%,  reduce = 80%, Cumulative CPU 18.47 sec

2020-03-20 23:45:40,011 Stage-1(job_1584341089622_358684) map = 100%,  reduce = 100%, Cumulative CPU 23.23 sec

MapReduce Total cumulative CPU time: 23 seconds 230 msec

Stage-1  Elapsed : 46404 ms  job_1584341089622_358684

Ended Job = job_1584341089622_358684

Launching Job 2 out of 2

Number of reduce tasks determined at compile time: 1

In order to change the average load for a reducer (in bytes):

  set hive.exec.reducers.bytes.per.reducer=<number>

In order to limit the maximum number of reducers:

  set hive.exec.reducers.max=<number>

In order to set a constant number of reducers:

  set mapreduce.job.reduces=<number>

Start submit job !

Start GetSplits

GetSplits finish, it costs : 47 milliseconds

Submit job success : job_1584341089622_358729

Starting Job = job_1584341089622_358729, Tracking URL = http://BJHTYD-Hope-25-11.hadoop.jd.local:50320/proxy/application_1584341089622_358729/

Kill Command = /data0/hadoop/hadoop_2.100.31_2019090518/bin/hadoop job  -kill job_1584341089622_358729

Hadoop job(job_1584341089622_358729) information for Stage-2: number of mappers: 5; number of reducers: 1

2020-03-20 23:45:48,353 Stage-2(job_1584341089622_358729) map = 0%,  reduce = 0%

2020-03-20 23:46:05,846 Stage-2(job_1584341089622_358729) map = 20%,  reduce = 0%, Cumulative CPU 2.62 sec

2020-03-20 23:46:06,873 Stage-2(job_1584341089622_358729) map = 60%,  reduce = 0%, Cumulative CPU 8.49 sec

2020-03-20 23:46:08,931 Stage-2(job_1584341089622_358729) map = 80%,  reduce = 0%, Cumulative CPU 11.53 sec

2020-03-20 23:46:09,960 Stage-2(job_1584341089622_358729) map = 100%,  reduce = 0%, Cumulative CPU 15.23 sec

2020-03-20 23:46:35,639 Stage-2(job_1584341089622_358729) map = 100%,  reduce = 100%, Cumulative CPU 20.37 sec

MapReduce Total cumulative CPU time: 20 seconds 370 msec

Stage-2  Elapsed : 54552 ms  job_1584341089622_358729

Ended Job = job_1584341089622_358729

MapReduce Jobs Launched:

Stage-1: Map: 2  Reduce: 5   Cumulative CPU: 23.23 sec   HDFS Read: 0.000 GB HDFS Write: 0.000 GB SUCCESS  Elapsed : 46s404ms job_1584341089622_358684

 

Stage-2: Map: 5  Reduce: 1   Cumulative CPU: 20.37 sec   HDFS Read: 0.000 GB HDFS Write: 0.000 GB SUCCESS  Elapsed : 54s552ms job_1584341089622_358729

 

Total MapReduce CPU Time Spent: 43s600ms

Total Map: 7  Total Reduce: 6

Total HDFS Read: 0.000 GB  Written: 0.000 GB

OK

3

Time taken: 103.692 seconds, Fetched: 1 row(s)

  

这个解决方案有点类似于set hive.groupby.skew.indata参数的作用!

实际测试:

1

2

3

4

5

6

7

8

9

select count(distinct dept_num)

from emp_ct

 

   

select count(*)

from (

    select distinct dept_num

    from emp_ct

)

这篇关于hive中count(distinct) 的原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1024329

相关文章

Go 语言中的select语句详解及工作原理

《Go语言中的select语句详解及工作原理》在Go语言中,select语句是用于处理多个通道(channel)操作的一种控制结构,它类似于switch语句,本文给大家介绍Go语言中的select语... 目录Go 语言中的 select 是做什么的基本功能语法工作原理示例示例 1:监听多个通道示例 2:带

鸿蒙中@State的原理使用详解(HarmonyOS 5)

《鸿蒙中@State的原理使用详解(HarmonyOS5)》@State是HarmonyOSArkTS框架中用于管理组件状态的核心装饰器,其核心作用是实现数据驱动UI的响应式编程模式,本文给大家介绍... 目录一、@State在鸿蒙中是做什么的?二、@Spythontate的基本原理1. 依赖关系的收集2.

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

JAVA封装多线程实现的方式及原理

《JAVA封装多线程实现的方式及原理》:本文主要介绍Java中封装多线程的原理和常见方式,通过封装可以简化多线程的使用,提高安全性,并增强代码的可维护性和可扩展性,需要的朋友可以参考下... 目录前言一、封装的目标二、常见的封装方式及原理总结前言在 Java 中,封装多线程的原理主要围绕着将多线程相关的操

kotlin中的模块化结构组件及工作原理

《kotlin中的模块化结构组件及工作原理》本文介绍了Kotlin中模块化结构组件,包括ViewModel、LiveData、Room和Navigation的工作原理和基础使用,本文通过实例代码给大家... 目录ViewModel 工作原理LiveData 工作原理Room 工作原理Navigation 工

Java的volatile和sychronized底层实现原理解析

《Java的volatile和sychronized底层实现原理解析》文章详细介绍了Java中的synchronized和volatile关键字的底层实现原理,包括字节码层面、JVM层面的实现细节,以... 目录1. 概览2. Synchronized2.1 字节码层面2.2 JVM层面2.2.1 ente

MySQL的隐式锁(Implicit Lock)原理实现

《MySQL的隐式锁(ImplicitLock)原理实现》MySQL的InnoDB存储引擎中隐式锁是一种自动管理的锁,用于保证事务在行级别操作时的数据一致性和安全性,本文主要介绍了MySQL的隐式锁... 目录1. 背景:什么是隐式锁?2. 隐式锁的工作原理3. 隐式锁的类型4. 隐式锁的实现与源代码分析4

MySQL中Next-Key Lock底层原理实现

《MySQL中Next-KeyLock底层原理实现》Next-KeyLock是MySQLInnoDB存储引擎中的一种锁机制,结合记录锁和间隙锁,用于高效并发控制并避免幻读,本文主要介绍了MySQL中... 目录一、Next-Key Lock 的定义与作用二、底层原理三、源代码解析四、总结Next-Key L