hive中count(distinct) 的原理

2024-06-02 15:18
文章标签 原理 hive count distinct

本文主要是介绍hive中count(distinct) 的原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • count(distinct id)的原理
  • count(distinct id)的解决方案

 


参考博客:

https://blog.csdn.net/oracle8090/article/details/80760233

 

回到顶部

count(distinct id)的原理

count(distinct id)从执行计划上面来看:只有一个reducer任务(即使你设置reducer任务为100个,实际上也没有用),所有的id都

会聚集到同一个reducer任务进行去重然后在聚合,这非常容易造成数据倾斜.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

STAGE DEPENDENCIES:

  Stage-1 is a root stage

  Stage-0 depends on stages: Stage-1

 

STAGE PLANS:

  Stage: Stage-1

    Map Reduce

      Map Operator Tree:

          TableScan

            alias: emp_ct

            Statistics: Num rows: 42 Data size: 171 Basic stats: COMPLETE Column stats: NONE

            Select Operator

              expressions: dept_num (type: int)

              outputColumnNames: _col0

              Statistics: Num rows: 42 Data size: 171 Basic stats: COMPLETE Column stats: NONE

              Reduce Output Operator

                key expressions: _col0 (type: int)

                sort order: +

                Statistics: Num rows: 42 Data size: 171 Basic stats: COMPLETE Column stats: NONE

      Reduce Operator Tree:

        Group By Operator

          aggregations: count(DISTINCT KEY._col0:0._col0)

          mode: complete

          outputColumnNames: _col0

          Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: NONE

          File Output Operator

            compressed: false

            Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: NONE

            table:

                input format: org.apache.hadoop.mapred.TextInputFormat

                output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat

                serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe

 

  Stage: Stage-0

    Fetch Operator

      limit: -1

      Processor Tree:

        ListSink

  

运行示例:注意设置的reducer任务数量实际上是不生效的。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

hive> set mapreduce.job.reduces=5;

hive>

    select count(distinct dept_num)

    from emp_ct;

Query ID = mart_fro_20200320233947_4f60c190-4967-4da6-bf3e-97db786fbc6c

Total jobs = 1

Launching Job 1 out of 1

Number of reduce tasks determined at compile time: 1

In order to change the average load for a reducer (in bytes):

  set hive.exec.reducers.bytes.per.reducer=<number>

In order to limit the maximum number of reducers:

  set hive.exec.reducers.max=<number>

In order to set a constant number of reducers:

  set mapreduce.job.reduces=<number>

Start submit job !

Start GetSplits

GetSplits finish, it costs : 32 milliseconds

Submit job success : job_1584341089622_358496

Starting Job = job_1584341089622_358496, Tracking URL = http://BJHTYD-Hope-25-11.hadoop.jd.local:50320/proxy/application_1584341089622_358496/

Kill Command = /data0/hadoop/hadoop_2.100.31_2019090518/bin/hadoop job  -kill job_1584341089622_358496

Hadoop job(job_1584341089622_358496) information for Stage-1: number of mappers: 2; number of reducers: 1

2020-03-20 23:39:58,215 Stage-1(job_1584341089622_358496) map = 0%,  reduce = 0%

2020-03-20 23:40:09,628 Stage-1(job_1584341089622_358496) map = 50%,  reduce = 0%, Cumulative CPU 2.74 sec

2020-03-20 23:40:16,849 Stage-1(job_1584341089622_358496) map = 100%,  reduce = 0%, Cumulative CPU 7.43 sec

2020-03-20 23:40:29,220 Stage-1(job_1584341089622_358496) map = 100%,  reduce = 100%, Cumulative CPU 10.64 sec

MapReduce Total cumulative CPU time: 10 seconds 640 msec

Stage-1  Elapsed : 40533 ms  job_1584341089622_358496

Ended Job = job_1584341089622_358496

MapReduce Jobs Launched:

Stage-1: Map: 2  Reduce: 1   Cumulative CPU: 10.64 sec   HDFS Read: 0.000 GB HDFS Write: 0.000 GB SUCCESS  Elapsed : 40s533ms job_1584341089622_358496

 

Total MapReduce CPU Time Spent: 10s640ms

Total Map: 2  Total Reduce: 1

Total HDFS Read: 0.000 GB  Written: 0.000 GB

OK

3

Time taken: 43.025 seconds, Fetched: 1 row(s)

  

回到顶部

count(distinct id)的解决方案

该怎么解决这个问题呢?实际上解决方法非常巧妙:

我们利用Hive对嵌套语句的支持,将原来一个MapReduce作业转换为两个作业,在第一阶段选出全部的非重复id,在第二阶段再对

这些已消重的id进行计数。这样在第一阶段我们可以通过增大Reduce的并发数,并发处理Map输出。在第二阶段,由于id已经消重,

因此COUNT(*)操作在Map阶段不需要输出原id数据,只输出一个合并后的计数即可。这样即使第二阶段Hive强制指定一个Reduce Task,

极少量的Map输出数据也不会使单一的Reduce Task成为瓶颈。改进后的SQL语句如下:

查看一下执行计划:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

STAGE DEPENDENCIES:

  Stage-1 is a root stage

  Stage-2 depends on stages: Stage-1

  Stage-0 depends on stages: Stage-2

 

STAGE PLANS:

  Stage: Stage-1

    Map Reduce

      Map Operator Tree:

          TableScan

            alias: emp_ct

            Statistics: Num rows: 42 Data size: 171 Basic stats: COMPLETE Column stats: NONE

            Select Operator

              expressions: dept_num (type: int)

              outputColumnNames: dept_num

              Statistics: Num rows: 42 Data size: 171 Basic stats: COMPLETE Column stats: NONE

              Reduce Output Operator

                key expressions: dept_num (type: int)

                sort order: +

                Map-reduce partition columns: dept_num (type: int)

                Statistics: Num rows: 42 Data size: 171 Basic stats: COMPLETE Column stats: NONE

      Reduce Operator Tree:

        Group By Operator

          keys: KEY._col0 (type: int)

          mode: complete

          outputColumnNames: _col0

          Statistics: Num rows: 21 Data size: 85 Basic stats: COMPLETE Column stats: NONE

          File Output Operator

            compressed: false

            table:

                input format: org.apache.hadoop.mapred.SequenceFileInputFormat

                output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat

                serde: org.apache.hadoop.hive.serde2.lazybinary.LazyBinarySerDe

 

  Stage: Stage-2

    Map Reduce

      Map Operator Tree:

          TableScan

            Reduce Output Operator

              sort order:

              Statistics: Num rows: 21 Data size: 85 Basic stats: COMPLETE Column stats: NONE

              value expressions: _col0 (type: int)

      Reduce Operator Tree:

        Group By Operator

          aggregations: count(VALUE._col0)

          mode: complete

          outputColumnNames: _col0

          Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: NONE

          File Output Operator

            compressed: false

            Statistics: Num rows: 1 Data size: 8 Basic stats: COMPLETE Column stats: NONE

            table:

                input format: org.apache.hadoop.mapred.TextInputFormat

                output format: org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat

                serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe

 

  Stage: Stage-0

    Fetch Operator

      limit: -1

      Processor Tree:

        ListSink

具体看一下执行结果:注意看reducer任务的数量,第一个reducer任务是5个,第二个是1个.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

hive> set mapreduce.job.reduces=5;

hive>

    select count(dept_num)

    from (

    >        select distinct dept_num

    >        from emp_ct

    >        ) t1;

Query ID = mart_fro_20200320234453_68ad3780-c3e5-44bc-94df-58a8f2b01f59

Total jobs = 2

Launching Job 1 out of 2

Number of reduce tasks not specified. Defaulting to jobconf value of: 5

In order to change the average load for a reducer (in bytes):

  set hive.exec.reducers.bytes.per.reducer=<number>

In order to limit the maximum number of reducers:

  set hive.exec.reducers.max=<number>

In order to set a constant number of reducers:

  set mapreduce.job.reduces=<number>

Start submit job !

Start GetSplits

GetSplits finish, it costs : 13 milliseconds

Submit job success : job_1584341089622_358684

Starting Job = job_1584341089622_358684, Tracking URL = http://BJHTYD-Hope-25-11.hadoop.jd.local:50320/proxy/application_1584341089622_358684/

Kill Command = /data0/hadoop/hadoop_2.100.31_2019090518/bin/hadoop job  -kill job_1584341089622_358684

Hadoop job(job_1584341089622_358684) information for Stage-1: number of mappers: 2; number of reducers: 5

2020-03-20 23:45:02,920 Stage-1(job_1584341089622_358684) map = 0%,  reduce = 0%

2020-03-20 23:45:23,533 Stage-1(job_1584341089622_358684) map = 50%,  reduce = 0%, Cumulative CPU 3.48 sec

2020-03-20 23:45:25,596 Stage-1(job_1584341089622_358684) map = 100%,  reduce = 0%, Cumulative CPU 7.08 sec

2020-03-20 23:45:32,804 Stage-1(job_1584341089622_358684) map = 100%,  reduce = 20%, Cumulative CPU 9.43 sec

2020-03-20 23:45:34,861 Stage-1(job_1584341089622_358684) map = 100%,  reduce = 40%, Cumulative CPU 12.39 sec

2020-03-20 23:45:36,923 Stage-1(job_1584341089622_358684) map = 100%,  reduce = 80%, Cumulative CPU 18.47 sec

2020-03-20 23:45:40,011 Stage-1(job_1584341089622_358684) map = 100%,  reduce = 100%, Cumulative CPU 23.23 sec

MapReduce Total cumulative CPU time: 23 seconds 230 msec

Stage-1  Elapsed : 46404 ms  job_1584341089622_358684

Ended Job = job_1584341089622_358684

Launching Job 2 out of 2

Number of reduce tasks determined at compile time: 1

In order to change the average load for a reducer (in bytes):

  set hive.exec.reducers.bytes.per.reducer=<number>

In order to limit the maximum number of reducers:

  set hive.exec.reducers.max=<number>

In order to set a constant number of reducers:

  set mapreduce.job.reduces=<number>

Start submit job !

Start GetSplits

GetSplits finish, it costs : 47 milliseconds

Submit job success : job_1584341089622_358729

Starting Job = job_1584341089622_358729, Tracking URL = http://BJHTYD-Hope-25-11.hadoop.jd.local:50320/proxy/application_1584341089622_358729/

Kill Command = /data0/hadoop/hadoop_2.100.31_2019090518/bin/hadoop job  -kill job_1584341089622_358729

Hadoop job(job_1584341089622_358729) information for Stage-2: number of mappers: 5; number of reducers: 1

2020-03-20 23:45:48,353 Stage-2(job_1584341089622_358729) map = 0%,  reduce = 0%

2020-03-20 23:46:05,846 Stage-2(job_1584341089622_358729) map = 20%,  reduce = 0%, Cumulative CPU 2.62 sec

2020-03-20 23:46:06,873 Stage-2(job_1584341089622_358729) map = 60%,  reduce = 0%, Cumulative CPU 8.49 sec

2020-03-20 23:46:08,931 Stage-2(job_1584341089622_358729) map = 80%,  reduce = 0%, Cumulative CPU 11.53 sec

2020-03-20 23:46:09,960 Stage-2(job_1584341089622_358729) map = 100%,  reduce = 0%, Cumulative CPU 15.23 sec

2020-03-20 23:46:35,639 Stage-2(job_1584341089622_358729) map = 100%,  reduce = 100%, Cumulative CPU 20.37 sec

MapReduce Total cumulative CPU time: 20 seconds 370 msec

Stage-2  Elapsed : 54552 ms  job_1584341089622_358729

Ended Job = job_1584341089622_358729

MapReduce Jobs Launched:

Stage-1: Map: 2  Reduce: 5   Cumulative CPU: 23.23 sec   HDFS Read: 0.000 GB HDFS Write: 0.000 GB SUCCESS  Elapsed : 46s404ms job_1584341089622_358684

 

Stage-2: Map: 5  Reduce: 1   Cumulative CPU: 20.37 sec   HDFS Read: 0.000 GB HDFS Write: 0.000 GB SUCCESS  Elapsed : 54s552ms job_1584341089622_358729

 

Total MapReduce CPU Time Spent: 43s600ms

Total Map: 7  Total Reduce: 6

Total HDFS Read: 0.000 GB  Written: 0.000 GB

OK

3

Time taken: 103.692 seconds, Fetched: 1 row(s)

  

这个解决方案有点类似于set hive.groupby.skew.indata参数的作用!

实际测试:

1

2

3

4

5

6

7

8

9

select count(distinct dept_num)

from emp_ct

 

   

select count(*)

from (

    select distinct dept_num

    from emp_ct

)

这篇关于hive中count(distinct) 的原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1024329

相关文章

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

MySQL count()聚合函数详解

《MySQLcount()聚合函数详解》MySQL中的COUNT()函数,它是SQL中最常用的聚合函数之一,用于计算表中符合特定条件的行数,本文给大家介绍MySQLcount()聚合函数,感兴趣的朋... 目录核心功能语法形式重要特性与行为如何选择使用哪种形式?总结深入剖析一下 mysql 中的 COUNT

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

详解MySQL中DISTINCT去重的核心注意事项

《详解MySQL中DISTINCT去重的核心注意事项》为了实现查询不重复的数据,MySQL提供了DISTINCT关键字,它的主要作用就是对数据表中一个或多个字段重复的数据进行过滤,只返回其中的一条数据... 目录DISTINCT 六大注意事项1. 作用范围:所有 SELECT 字段2. NULL 值的特殊处

Spring @Scheduled注解及工作原理

《Spring@Scheduled注解及工作原理》Spring的@Scheduled注解用于标记定时任务,无需额外库,需配置@EnableScheduling,设置fixedRate、fixedDe... 目录1.@Scheduled注解定义2.配置 @Scheduled2.1 开启定时任务支持2.2 创建

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意