多源 BFS 详解

2024-06-02 15:12
文章标签 详解 bfs 多源

本文主要是介绍多源 BFS 详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、多源与单源的区别

二、例题练习

2.1 例题1:01 矩阵

2.2 例题2:飞地的数量

2.3 例题3:地图中的最高点 

2.4 例题4:地图分析


一、多源与单源的区别

单源最短路问题如何解决已经在上篇博客给出BFS 解决最短路问题,如果还没学习单源的建议先学习,因为多源就是在单源的基础上进行一些改动即可,即把多个源点一起放入队列中。

• 注意:

多源 BFS 只能用来解决边权为 1 (其实只要边权相等即可,可以转化为边权 1 来解决)的多源最短路问题。如果是边权不相等的情况那么就要使用到图论里面的 Floyd-Warshall 算法,这个后续会写到。

那么该如何解决多源 BFS 问题呢?

解法1:暴力,直接把多源最短路问题转化为若干个单源最短路问题,这个大概率是会超时的,因为重复查找的次数非常多。

解法2:把所有的源点当成一个 “超级源点”,那么问题就变成了单一的单源最短路问题。

如何证明正确性呢? 

理性:严格的证明,这些在一些算法书上能够找到,比较麻烦,文章主要写,如何来做题。故我们就感性的理解一下。

感性:就好比如下图这些性能相同的汽车(把汽车看成开始的源点),如果采用单源最短路的解决思路就是一辆一辆车启动,最后比较谁先到终点。如果采用多源最短路的解题思路就是把这些车一起启动,谁先到终点,就是最短路。这里可能有的友友会问,这样和单源最短路的时间复杂度不是一样的嘛?其实当在同一条路上如果有节点在前面,那么后面的节点就可以直接舍去,因为绝对不可能是最短路。

二、例题练习

2.1 例题1:01 矩阵

• 题目链接:01 矩阵

• 问题描述:

给定一个由 0 和 1 组成的矩阵 mat ,请输出一个大小相同的矩阵,其中每一个格子是 mat 中对应位置元素到最近的 0 的距离。

两个相邻元素间的距离为 1 。

• 解题思路:

如果采用单源最短路(一个位置一个位置的去求)的话会超时(替大家试过了),正确的解法多源 BFS + 正难则反(填表更快),把所有的 0 当成起点,1当作终点(终点可以有多个)。找到一个 1 且是没有被遍历过的就可以把路径数直接填入,因为绝对没有比这个更小的路径了。

• 代码编写:

直接把最开始创建的数组都初始化成 -1 ,这样就不用创建一个 vis 表来标记已经走过的节点。且路径数可以直接在原来的路径数上 + 1 即可,一举两得。具体代码如下:

class Solution {int[] dx = {0,0,1,-1};int[] dy = {1,-1,0,0};public int[][] updateMatrix(int[][] mat) {//1.把所有为0的元素存入队列int n = mat.length;int m = mat[0].length;//2.创建 dest 数组//3.dest初始化为 - 1int[][] dest = new int[n][m];for(int i = 0;i < n;i++){Arrays.fill(dest[i],-1);}Queue<int[]> q = new LinkedList<>();for(int i = 0;i < n;i++){for(int j = 0;j < m;j++){if(mat[i][j] == 0){dest[i][j] = 0;q.add(new int[]{i,j});}}}//4.bfswhile(!q.isEmpty()){int[] tmp = q.poll();int a = tmp[0],b = tmp[1];for(int k = 0;k < 4;k++){int x = a + dx[k];int y = b + dy[k];if(x >= 0 && x < n && y >= 0 && y < m && dest[x][y] == -1){if(mat[x][y] == 1){//5.在原来的基础上直接 + 1dest[x][y] = dest[a][b] + 1;}q.add(new int[]{x,y});}}}return dest;}
}

2.2 例题2:飞地的数量

• 题目链接:飞地的数量

• 问题描述:

给你一个大小为 m x n 的二进制矩阵 grid ,其中 0 表示一个海洋单元格、1 表示一个陆地单元格。

一次 移动 是指从一个陆地单元格走到另一个相邻(上、下、左、右)的陆地单元格或跨过 grid 的边界。

返回网格中 无法 在任意次数的移动中离开网格边界的陆地单元格的数量。

• 解题思路:

正难则反: 从边上的 1 开始搜索,把与边上 1 相连的联通区域全部标记⼀下,然后再遍历⼀遍矩阵,看看哪些位置的 1 没有被标记即可,标记的时候,可以用多源 bfs 解决(这题单源或者 DFS都行)。

• 代码编写:

class Solution {int n,m;int[] dx = {0,0,1,-1};int[] dy = {1,-1,0,0};public int numEnclaves(int[][] grid) {n = grid.length;m = grid[0].length;//1.拿所有边界的1进行一次bfs标记Queue<int[]> q = new LinkedList<>();for(int i = 0;i < n;i++){for(int j = 0;j < m;j++){if(i == 0 || i == n - 1 || j == 0 || j == m - 1){//这么写比较快且不容易出错if(grid[i][j] == 1){q.add(new int[]{i,j});}}}}//直接改为2即可while(!q.isEmpty()){int size = q.size();for(int i = 0;i < size;i++){int[] tmp = q.poll();int a = tmp[0],b = tmp[1];grid[a][b] = 2;for(int k = 0;k < 4;k++){int x = a + dx[k];int y = b + dy[k];if(x >= 0 && x < n && y >= 0 && y < m && grid[x][y] == 1){q.add(new int[]{x,y});grid[x][y] = 2;}}}}//2.最后遍历如果为 1 且未被标记的话ret++int ret = 0;//最后的结果for(int i = 0;i < n;i++){for(int j = 0;j < m;j++){if(grid[i][j] == 1){ret++;}}}//3.返回 retreturn ret;}
}

2.3 例题3:地图中的最高点 

• 题目链接:地图中的最高点

• 问题描述:

给你一个大小为 m x n 的整数矩阵 isWater ,它代表了一个由 陆地 和 水域 单元格组成的地图。

  • 如果 isWater[i][j] == 0 ,格子 (i, j) 是一个 陆地 格子。
  • 如果 isWater[i][j] == 1 ,格子 (i, j) 是一个 水域 格子。

你需要按照如下规则给每个单元格安排高度:

  • 每个格子的高度都必须是非负的。
  • 如果一个格子是 水域 ,那么它的高度必须为 0 。
  • 任意相邻的格子高度差 至多 为 1 。当两个格子在正东、南、西、北方向上相互紧挨着,就称它们为相邻的格子。(也就是说它们有一条公共边)

找到一种安排高度的方案,使得矩阵中的最高高度值 最大 。

请你返回一个大小为 m x n 的整数矩阵 height ,其中 height[i][j] 是格子 (i, j) 的高度。如果有多种解法,请返回 任意一个 。

• 解题思路:

01矩阵的变型题,直接用多源 bfs 解决即可。任意相邻的格子高度差 至多 为 1,这个条件非常重要,因为有这个条件我们才能确定这题其实是用最短路的思路来解决。具体就是把所有水域的格子添加到队列中,一层一层遍历即可。

• 代码编写:

class Solution {int[] dx = {0,0,1,-1};int[] dy = {1,-1,0,0};public int[][] highestPeak(int[][] isWater) {//多源 bfsint n = isWater.length;int m = isWater[0].length;int[][] ans = new int[n][m];//3.把返回数组初始化为 -1for(int i = 0;i < n;i++){Arrays.fill(ans[i],-1);}//1.找到所有的值为 1 的加入 bfsQueue<int[]> q = new LinkedList<>();for(int i = 0;i < n;i++){for(int j = 0;j < m;j++){if(isWater[i][j] == 1){ans[i][j] = 0;q.add(new int[]{i,j});}}}while(!q.isEmpty()){int size = q.size();for(int i = 0;i < size;i++){int[] tmp = q.poll();int a = tmp[0],b = tmp[1];//这个地方不用再填值了for(int k = 0;k < 4;k++){int x = a + dx[k];int y = b + dy[k];if(x >= 0 && x < n && y >= 0 && y < m && ans[x][y] == -1 && isWater[x][y] == 0){ans[x][y] = ans[a][b] + 1;//直接在原来的数值上 + 1 即可//不用再来一个timeq.add(new int[]{x,y});}}}}//4.返回答案return ans;}
}

2.4 例题4:地图分析

• 题目链接:地图分析

• 问题描述:

你现在手里有一份大小为 n x n 的 网格 grid,上面的每个 单元格 都用 0 和 1 标记好了。其中 0 代表海洋,1 代表陆地。

请你找出一个海洋单元格,这个海洋单元格到离它最近的陆地单元格的距离是最大的,并返回该距离。如果网格上只有陆地或者海洋,请返回 -1

我们这里说的距离是「曼哈顿距离」( Manhattan Distance):(x0, y0) 和 (x1, y1) 这两个单元格之间的距离是 |x0 - x1| + |y0 - y1| 。

• 解题思路:

正难则反,把所有 1 的节点都进队,这样一次就可以把所有的 0 都填好(路径数)。和上面几题都差不多,多源 BFS 代码编写倒是不难,主要是要先转化一下,怎么把那么多节点变成 “超级源点”。

• 代码编写:

class Solution {int[] dx = {0,0,1,-1};int[] dy = {1,-1,0,0};public int maxDistance(int[][] grid) {//多源 bfsint n = grid.length;int m = grid[0].length;boolean[][] vis = new boolean[n][m];//1.把 1 进 bfsQueue<int[]> q = new LinkedList<>();for(int i = 0;i < n;i++){for(int j = 0;j < m;j++){if(grid[i][j] == 1){q.add(new int[]{i,j});}}}if(q.size() == 0 || q.size() == (n * m)){return -1;}int time = 0;//2.time计数while(!q.isEmpty()){int size = q.size();time++;for(int i = 0;i < size;i++){int[] tmp = q.poll();int a = tmp[0],b = tmp[1];vis[a][b] = true;for(int k = 0;k < 4;k++){int x = a + dx[k],y = b + dy[k];if(x >= 0 && x < n && y >= 0 && y < m && !vis[x][y] && grid[x][y] == 0){q.add(new int[]{x,y});//3.vis 去重vis[x][y] = true;}}}}return time - 1;}
}

• 小结:和单源 BFS 找最短路的模板基本一样,只要多加练习,代码编写是很简单的,重要的是思路,哪些题目可以使用多源 BFS 来解决,这个就需要多做题了👍👍👍。

结语:

其实写博客不仅仅是为了教大家,同时这也有利于我巩固知识点,和做一个学习的总结,由于作者水平有限,对文章有任何问题还请指出,非常感谢。如果大家有所收获的话还请不要吝啬你们的点赞收藏和关注,这可以激励我写出更加优秀的文章。

这篇关于多源 BFS 详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1024324

相关文章

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

java使用protobuf-maven-plugin的插件编译proto文件详解

《java使用protobuf-maven-plugin的插件编译proto文件详解》:本文主要介绍java使用protobuf-maven-plugin的插件编译proto文件,具有很好的参考价... 目录protobuf文件作为数据传输和存储的协议主要介绍在Java使用maven编译proto文件的插件

Android ClassLoader加载机制详解

《AndroidClassLoader加载机制详解》Android的ClassLoader负责加载.dex文件,基于双亲委派模型,支持热修复和插件化,需注意类冲突、内存泄漏和兼容性问题,本文给大家介... 目录一、ClassLoader概述1.1 类加载的基本概念1.2 android与Java Class

Java中的数组与集合基本用法详解

《Java中的数组与集合基本用法详解》本文介绍了Java数组和集合框架的基础知识,数组部分涵盖了一维、二维及多维数组的声明、初始化、访问与遍历方法,以及Arrays类的常用操作,对Java数组与集合相... 目录一、Java数组基础1.1 数组结构概述1.2 一维数组1.2.1 声明与初始化1.2.2 访问

SpringBoot线程池配置使用示例详解

《SpringBoot线程池配置使用示例详解》SpringBoot集成@Async注解,支持线程池参数配置(核心数、队列容量、拒绝策略等)及生命周期管理,结合监控与任务装饰器,提升异步处理效率与系统... 目录一、核心特性二、添加依赖三、参数详解四、配置线程池五、应用实践代码说明拒绝策略(Rejected

一文详解SpringBoot中控制器的动态注册与卸载

《一文详解SpringBoot中控制器的动态注册与卸载》在项目开发中,通过动态注册和卸载控制器功能,可以根据业务场景和项目需要实现功能的动态增加、删除,提高系统的灵活性和可扩展性,下面我们就来看看Sp... 目录项目结构1. 创建 Spring Boot 启动类2. 创建一个测试控制器3. 创建动态控制器注

C#读写文本文件的多种方式详解

《C#读写文本文件的多种方式详解》这篇文章主要为大家详细介绍了C#中各种常用的文件读写方式,包括文本文件,二进制文件、CSV文件、JSON文件等,有需要的小伙伴可以参考一下... 目录一、文本文件读写1. 使用 File 类的静态方法2. 使用 StreamReader 和 StreamWriter二、二进

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v