6.2 休息日 背包问题总结

2024-06-02 14:36

本文主要是介绍6.2 休息日 背包问题总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

就目前所遇到的01背包与完全背包作总结。

01背包

有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

二维dp数组01背包

动规五部曲

1.确定dp数组以及下标的含义

dp[i][j] 表示从下标为[0-i]的物品里任意取,放进容量为j的背包,价值总和最大是多少

2.确定递推公式

  • 不放物品i:由dp[i - 1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j]。(其实就是当物品i的重量大于背包j的重量时,物品i无法放进背包中,所以背包内的价值依然和前面相同。)
  • 放物品i:由dp[i - 1][j - weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值

所以递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

3.dp数组如何初始化

首先从dp[i][j]的定义出发,如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0。

状态转移方程 dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出i 是由 i-1 推导出来,那么i为0的时候就一定要初始化。

dp[0][j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最大价值。

那么很明显当 j < weight[0]的时候,dp[0][j] 应该是 0,因为背包容量比编号0的物品重量还小。

当j >= weight[0]时,dp[0][j] 应该是value[0],因为背包容量放足够放编号0物品。

其实从递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出dp[i][j] 是由左上方数值和左方数值推导出来了,那么 其他下标初始为什么数值都可以,因为都会被覆盖。

但只不过一开始就统一把dp数组统一初始为0,更方便一些。

4.确定遍历顺序

先遍历物品与先遍历背包均可。虽然两个for循环遍历的次序不同,但是dp[i][j]所需要的数据就是左上角(包括左与正上),根本不影响dp[i][j]公式的推导!

5.举例推导/打印dp数组

一维数组(滚动数组)

滚动数组的由来,需要满足的条件是上一层可以重复利用,直接拷贝到当前层。

动规五部曲

1.确定dp数组的定义

在一维dp数组中,dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]。

2.一维dp数组的递推公式

dp[j]为 容量为j的背包所背的最大价值,那么如何推导dp[j]呢?

dp[j]可以通过dp[j - weight[i]]推导出来,dp[j - weight[i]]表示容量为j - weight[i]的背包所背的最大价值。

dp[j - weight[i]] + value[i] 表示 容量为 j - 物品i重量 的背包 加上 物品i的价值。(也就是容量为j的背包,放入物品i了之后的价值即:dp[j])

此时dp[j]有两个选择,一个是取自己dp[j] 相当于 二维dp数组中的dp[i-1][j],即不放物品i,一个是取dp[j - weight[i]] + value[i],即放物品i,指定是取最大的,毕竟是求最大价值。

3.一维dp数组如何初始化

dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j],那么dp[0]就应该是0,因为背包容量为0所背的物品的最大价值就是0。

那么dp数组除了下标0的位置,初始为0,其他下标应该初始化多少呢?

看一下递归公式:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

dp数组在推导的时候一定是取价值最大的数,如果题目给的价值都是正整数那么非0下标都初始化为0就可以了。

4.一维dp数组遍历顺序

与二维dp的写法,遍历背包的顺序是不一样的!

二维dp遍历的时候,背包容量是从小到大,而一维dp遍历的时候,背包是从大到小。

倒序遍历是为了保证物品i只被放入一次!。但如果一旦正序遍历了,那么物品0就会被重复加入多次!从后往前循环,每次取得状态不会和之前取得状态重合,这样每种物品就只取一次了。

那么问题又来了,为什么二维dp数组遍历的时候不用倒序呢?

因为对于二维dp,dp[i][j]都是通过上一层即dp[i - 1][j]计算而来,本层的dp[i][j]并不会被覆盖!

再来看看两个嵌套for循环的顺序,代码中是先遍历物品嵌套遍历背包容量,那可不可以先遍历背包容量嵌套遍历物品呢?

不可以!

因为一维dp的写法,背包容量一定是要倒序遍历,如果遍历背包容量放在上一层,那么每个dp[j]就只会放入一个物品,即:背包里只放入了一个物品。

倒序遍历的原因是,本质上还是一个对二维数组的遍历,并且右下角的值依赖上一层左上角的值,因此需要保证左边的值仍然是上一层的,从右向左覆盖

5.举例推导dp数组

完全背包

有N件物品和一个最多能背重量为W的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品都有无限个(也就是可以放入背包多次),求解将哪些物品装入背包里物品价值总和最大。

二维数组

动规五部曲

1.确定dp数组以及下标的含义

dp[i][j] 表示从下标为[0-i]的物品里任意取任意件,放进容量为j的背包,价值总和最大是多少

2.确定递推公式

  • 不放物品i:由dp[i - 1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j]。(其实就是当物品i的重量大于背包j的重量时,物品i无法放进背包中,所以背包内的价值依然和前面相同。)
  • 放k件物品i
  • 参考:【超精细!】动态规划---完全背包问题全面解读!!_哔哩哔哩_bilibili

所以递归公式: dp[i][j] = max(dp[i-1][j], dp[i ][j - weight[i]] + value[i]);  //同层取n件

3.dp数组如何初始化

首先从dp[i][j]的定义出发,如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0。

状态转移方程 dp[i][j] = max(dp[i-1][j], dp[i ][j - weight[i]] + value[i]);  可以看出i 是由 i-1 和同一层之前 推导出来,那么i为0的时候就一定要初始化。

dp[0][j],即:i为0,存放任意件编号0的物品的时候,各个容量的背包所能存放的最大价值。

那么很明显当 j < weight[0]的时候,dp[0][j] 应该是 0,因为背包容量比编号0的物品重量还小。

当j >= weight[0]时,dp[0][j] 应该是dp[0][j] = dp[0][j-weight[0]]+value[0]; //多次选取,因为背包容量放足够放多件编号0物品。

其实从递归公式: dp[i][j] = max(dp[i-1][j], dp[i ][j - weight[i]] + value[i]); 可以看出dp[i][j] 是由左上方数值和左方数值推导出来了,那么 其他下标初始为什么数值都可以,因为都会被覆盖。

但只不过一开始就统一把dp数组统一初始为0,更方便一些。

4.确定遍历顺序 在代码中使用了先物品后背包

先遍历物品与先遍历背包均可。虽然两个for循环遍历的次序不同,但是dp[i][j]所需要的数据就是左上角(包括左与正上),根本不影响dp[i][j]公式的推导!

因为物品有无限个所以内层循环可以正序遍历重复放入。

再来看看两个嵌套for循环的顺序,代码中是先遍历物品嵌套遍历背包容量,那可不可以先遍历背包容量嵌套遍历物品呢?

可以!

在完全背包中,对于一维dp数组来说,其实两个for循环嵌套顺序是无所谓的!因为两个for循环都是正序遍历,物品有无数个,先遍历物品与先遍历背包得到的结果是相同的,所以遍历顺序可以改变。因为dp[j] 是根据 下标j之前(左边)所对应的dp[j]计算出来的。 只要保证下标j之前的dp[j]都是经过计算的就可以了。

5.举例推导/打印dp数组

package day62;import java.lang.*;public class day62{public static void main (String[] args) {int n = 4;int w = 5;int[][] dp = new int[n][w+1];int [] weight = new int []{1,2,3,4};int [] value = new int []{2,4,5,6};for (int j = weight[0]; j <= w; j++) {dp[0][j] = dp[0][j-weight[0]]+value[0];   //多次选取}for(int i = 1 ; i< n ; i++){for(int j = 1; j <= w; j++){if (j - weight[i] >= 0) dp[i][j] = Math.max(dp[i-1][j], dp[i][j-weight[i]] + value[i]);else   dp[i][j] = dp[i-1][j];}}// 打印dp数组for (int i = 0; i < n; i++) {for (int j = 0; j <= w; j++) {System.out.print(dp[i][j] + "\t");}System.out.println("\n");}System.out.println(dp[n-1][w]);}
}

一维数组

动规五部曲


1.确定dp数组的定义

在一维dp数组中,dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]。

2.一维dp数组的递推公式

dp[j]为 容量为j的背包所背的最大价值,那么如何推导dp[j]呢?

dp[j]可以通过dp[j - weight[i]]推导出来,dp[j - weight[i]]表示容量为j - weight[i]的背包所背的最大价值。

dp[j - weight[i]] + value[i] 表示 容量为 j - 物品i重量 的背包 加上 物品i的价值。(也就是容量为j的背包,放入物品i了之后的价值即:dp[j])

此时dp[j]有两个选择,一个是取自己dp[j] 相当于 二维dp数组中的dp[i-1][j],即不放物品i,一个是取dp[j - weight[i]] + value[i],即放物品i,指定是取最大的,毕竟是求最大价值,

3.一维dp数组如何初始化

dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j],那么dp[0]就应该是0,因为背包容量为0所背的物品的最大价值就是0。

dp数组在推导的时候一定是取价值最大的数,如果题目给的价值都是正整数那么非0下标都初始化为0就可以了。

这样才能让dp数组在递归公式的过程中取的最大的价值,而不是被初始值覆盖了。

4.一维dp数组遍历顺序

因为物品有无限个所以内层循环可以正序遍历重复放入。

再来看看两个嵌套for循环的顺序,代码中是先遍历物品嵌套遍历背包容量,那可不可以先遍历背包容量嵌套遍历物品呢?

可以!

在完全背包中,对于一维dp数组来说,其实两个for循环嵌套顺序是无所谓的!因为两个for循环都是正序遍历,物品有无数个,先遍历物品与先遍历背包得到的结果是相同的,所以遍历顺序可以改变。因为dp[j] 是根据 下标j之前(左边)所对应的dp[j]计算出来的。 只要保证下标j之前的dp[j]都是经过计算的就可以了。

5.举例推导/打印dp数组

这篇关于6.2 休息日 背包问题总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1024245

相关文章

mybatis和mybatis-plus设置值为null不起作用问题及解决

《mybatis和mybatis-plus设置值为null不起作用问题及解决》Mybatis-Plus的FieldStrategy主要用于控制新增、更新和查询时对空值的处理策略,通过配置不同的策略类型... 目录MyBATis-plusFieldStrategy作用FieldStrategy类型每种策略的作

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

pip install jupyterlab失败的原因问题及探索

《pipinstalljupyterlab失败的原因问题及探索》在学习Yolo模型时,尝试安装JupyterLab但遇到错误,错误提示缺少Rust和Cargo编译环境,因为pywinpty包需要它... 目录背景问题解决方案总结背景最近在学习Yolo模型,然后其中要下载jupyter(有点LSVmu像一个

解决jupyterLab打开后出现Config option `template_path`not recognized by `ExporterCollapsibleHeadings`问题

《解决jupyterLab打开后出现Configoption`template_path`notrecognizedby`ExporterCollapsibleHeadings`问题》在Ju... 目录jupyterLab打开后出现“templandroidate_path”相关问题这是 tensorflo

如何解决Pycharm编辑内容时有光标的问题

《如何解决Pycharm编辑内容时有光标的问题》文章介绍了如何在PyCharm中配置VimEmulator插件,包括检查插件是否已安装、下载插件以及安装IdeaVim插件的步骤... 目录Pycharm编辑内容时有光标1.如果Vim Emulator前面有对勾2.www.chinasem.cn如果tools工

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Java多线程父线程向子线程传值问题及解决

《Java多线程父线程向子线程传值问题及解决》文章总结了5种解决父子之间数据传递困扰的解决方案,包括ThreadLocal+TaskDecorator、UserUtils、CustomTaskDeco... 目录1 背景2 ThreadLocal+TaskDecorator3 RequestContextH

关于Spring @Bean 相同加载顺序不同结果不同的问题记录

《关于Spring@Bean相同加载顺序不同结果不同的问题记录》本文主要探讨了在Spring5.1.3.RELEASE版本下,当有两个全注解类定义相同类型的Bean时,由于加载顺序不同,最终生成的... 目录问题说明测试输出1测试输出2@Bean注解的BeanDefiChina编程nition加入时机总结问题说明

关于最长递增子序列问题概述

《关于最长递增子序列问题概述》本文详细介绍了最长递增子序列问题的定义及两种优化解法:贪心+二分查找和动态规划+状态压缩,贪心+二分查找时间复杂度为O(nlogn),通过维护一个有序的“尾巴”数组来高效... 一、最长递增子序列问题概述1. 问题定义给定一个整数序列,例如 nums = [10, 9, 2