现代信号处理12_谱估计的4种方法(CSDN_20240602)

2024-06-02 13:20

本文主要是介绍现代信号处理12_谱估计的4种方法(CSDN_20240602),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Slepian Spectral Estimator(1950)

做谱估计的目标是尽可能看清楚信号功率谱在某一个频率上的情况,假设我们想了解零频时的分布,最理想的情况是滤波器的传递函数H(ω) 是一个冲激函数,这样就没有旁瓣,也就没有泄漏;其次,主瓣宽度为零,分辨率极好。然而在现实中,理想的冲激函数是无法实现的,所以,只能允许H(ω) 有一定通带(假设为-βπ,βπ )。另外,由于滤波器是有限长度的,所以H(ω) 不可避免地会有泄漏,但我们可以要求泄漏尽可能地小,即做下面的优化

时,有最优解,其中U是矩阵B的特征向量,而h正是B最大特征值对应的那个特征向量。

小结

与传统的周期图谱估计方法相比,Slepian Spectral Estimator将着眼点转移到要观察的频率点附近,其目标是,设计一个对信号功率谱进行估计的滤波器,希望信号通过滤波器后,想要的频谱分量能够有效保存下来,而无关的谱分量尽可能被抑制。       这种估计存在的问题:

  1. 仅考虑滤波器自身的响应,而没有考虑信号,不同的信号通过滤波器会有不同的表现,特别是随机信号会特别复杂。这种谱分析是信号无关的,不管信号是什么样的,都使用同一个滤波器进行估计。
  2. 没有用到统计的观念,所有的信息都是确定的,只依赖于频带的宽度。然而对随机信号进行谱估计是,不能不用到统计。

Capon Spectral Estimator (1969)

与一般谱估计的对比

小结

        传统的谱分析:为了获得信号在某个频率点上能量情况,就极大化信号在这个频率点上的响应,Slepian方法就是典型代表:在要分析的频率的附近划一个区域,然后极大化信号在这个区域上的响应,尽可能抑制其它频率的响应。而Capon方法的思路是,在要观察的频率点上给定一个约束条件,使信号在这个频率上的响应得到保证,然后在此基础上提出新的要求:极小化信号在其它频率的响应。

MUSIC(Multiple Signal Classification)

MUSIC

至此,我们可以看到MUSIC方法至少在3个方面进行了创造性的工作:

·1. 对Y求相关阵,充分考虑了噪声

·2. 在解方程很困难的情况下,放弃了直接求解方程的方法,而是分析等式两端的秩,这样虽然不能完全得到方程的解,但是我们感兴趣的信息(信号频率)可以得到。

·3. 得到了信号子空间和方向矢量构成的子空间相同,进而得到方向矢量张成的子空间与噪声子空间正交的结论,这也是MUSIC方法的核心所在。

小结

MUSIC方法提出了“超分辨率”的理念,首次呈现了分辨率极高的谱图。在之前的谱分析中,分辨率取决于信号的长度,信号越长,分辨率越高。而在MUSIC方法中,分辨率和信号长度没有太大关系,以很短的数据就可以获得很高的分辨率,能得到这种效果的原因主要有2个:

·1. MUSIC是一种非线性方法,它脱离了过去用线性滤波提取频率分量的传统路线,因此它达到的水平是Slepian和Capon等方法无法相比的。

·2. MUSIC得到的是一种“伪谱”,谱峰的位置代表信号的频率,但高度并不代表信号在这个频率上的能量大小,而且这种方法也没有给出谱峰高度与信号能量之间的关系。

MUSIC谱是一种“伪谱”,只反映了方向矢量与噪声子空间之间的正交关系的良好程度。在理想情况下,它们之间应该是严格正交的,但是因为噪声的存在,谱图只反映了它们之间关系的一种估计。

       在上面的5步中,最困难的是第3步,因为有些时候无法准确地对特征值分组,如果分组不准,会对MUSIC性能造成致命的影响,因为特征分组错误,就意味着子空间估计错误,信号频率分量的个数也会估计错误。因此MUSIC是一种很脆弱的方法,这种方法对信噪比的要求特别高,只有在高信噪比的条件下,才能准确估计子空间的维数。在信噪比的条件下,周期图估计效果比较好,通常我将MUSIC和周期图两种方法结合使用:先用周期图法确定信号个数,然后在用MUSIC方法获取信号频率分量准确位置。

ROOT MUSIC

Min-Norn MUSIC

MUSIC的核心是方向矢量子空间与噪声子空间正交。从正交性出发,容易导致“伪峰”的出现。因为在寻找正交点的过程中,频率点在整个频率轴上滑动,方向矢量与噪声子空间的关系在不断变换,在某一频点两者正交时,我们判定这个频点就是我们希望得到的频点之一,即这个频点包含在信号中。然而我们仅仅知道正交时,该频点在信号中,那么不正交时有什么意义呢?或者说两者之间的夹角的大小有什么意义呢?两者之间的夹角为89度时是不是比60度更像信号呢?MUSIC方法并没有给出上面问题的答案。

那么能不能构造一种新的方法,既能利用MUSIC带来的超分辨率,又能引入误差的概念,作为频点与信号符合程度的判定依据呢?答案就是使用Min-Norm MUSIC方法。

小结

MUSIC方法最核心的思想是:方向矢量张成的子空间和信号矢量张成的子空间是同一个子空间,判断2个子空间是否相同时很困难的,尤其是两个子空间对应的基不相同的时候。在这里,信号子空间的基使彼此正交的,但是方向子空间的基并不正交,为了得到信号频率的信息,必须让两个子空间产生关系,所以前面提出了很多必要条件,Min-Norm MUSIC 对谱峰的高度做出了解释。

MUSIC与Capon方法比较

ESPRIT(Estimation of Signal Parameters with Rotation Invariant Technique)用旋转不变技术估计参数

ESPRIT方法可以一次求出我们想要的所有信号频点。

------------------------------------------------------------------------------------------------
因为文档中公式较多,不方便编辑,所以本文使用截图的方式展现。如需电子版文档,可以通过下面的链接进行下载。

链接icon-default.png?t=N7T8http://generatelink.xam.ink/change/makeurl/changeurl/11779

这篇关于现代信号处理12_谱估计的4种方法(CSDN_20240602)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1024082

相关文章

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

Windows 上如果忘记了 MySQL 密码 重置密码的两种方法

《Windows上如果忘记了MySQL密码重置密码的两种方法》:本文主要介绍Windows上如果忘记了MySQL密码重置密码的两种方法,本文通过两种方法结合实例代码给大家介绍的非常详细,感... 目录方法 1:以跳过权限验证模式启动 mysql 并重置密码方法 2:使用 my.ini 文件的临时配置在 Wi

MySQL重复数据处理的七种高效方法

《MySQL重复数据处理的七种高效方法》你是不是也曾遇到过这样的烦恼:明明系统测试时一切正常,上线后却频频出现重复数据,大批量导数据时,总有那么几条不听话的记录导致整个事务莫名回滚,今天,我就跟大家分... 目录1. 重复数据插入问题分析1.1 问题本质1.2 常见场景图2. 基础解决方案:使用异常捕获3.

最详细安装 PostgreSQL方法及常见问题解决

《最详细安装PostgreSQL方法及常见问题解决》:本文主要介绍最详细安装PostgreSQL方法及常见问题解决,介绍了在Windows系统上安装PostgreSQL及Linux系统上安装Po... 目录一、在 Windows 系统上安装 PostgreSQL1. 下载 PostgreSQL 安装包2.

SQL中redo log 刷⼊磁盘的常见方法

《SQL中redolog刷⼊磁盘的常见方法》本文主要介绍了SQL中redolog刷⼊磁盘的常见方法,将redolog刷入磁盘的方法确保了数据的持久性和一致性,下面就来具体介绍一下,感兴趣的可以了解... 目录Redo Log 刷入磁盘的方法Redo Log 刷入磁盘的过程代码示例(伪代码)在数据库系统中,r

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Java中Switch Case多个条件处理方法举例

《Java中SwitchCase多个条件处理方法举例》Java中switch语句用于根据变量值执行不同代码块,适用于多个条件的处理,:本文主要介绍Java中SwitchCase多个条件处理的相... 目录前言基本语法处理多个条件示例1:合并相同代码的多个case示例2:通过字符串合并多个case进阶用法使用

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

html5的响应式布局的方法示例详解

《html5的响应式布局的方法示例详解》:本文主要介绍了HTML5中使用媒体查询和Flexbox进行响应式布局的方法,简要介绍了CSSGrid布局的基础知识和如何实现自动换行的网格布局,详细内容请阅读本文,希望能对你有所帮助... 一 使用媒体查询响应式布局        使用的参数@media这是常用的