Python数据库ORM SQLAlchemy 0.7学习笔记(6) 查询

2024-06-02 11:32

本文主要是介绍Python数据库ORM SQLAlchemy 0.7学习笔记(6) 查询,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 返回列表和标量(Scalar)

前面我们注意到Query对象可以返回可迭代的值(iterator value),然后我们可以通过for in来查询。不过Query对象的all()one()以及first()方法将返回非迭代值(non-iterator value),比如说all()返回的是一个列表:

>>> query = session.query(User).\
>>>         filter(User.name.like('%ed')).order_by(User.id)
>>> query.all() 
SELECT users.id AS users_id,users.name AS users_name,users.fullname AS users_fullname,users.password AS users_password
FROM users
WHERE users.name LIKE ? ORDER BY users.id
('%ed',)[User('ed','Ed Jones', 'f8s7ccs'), User('fred','Fred Flinstone', 'blah')]

first()方法限制并仅作为标量返回结果集的第一条记录:

>>> query.first() 
SELECT users.id AS users_id,users.name AS users_name,users.fullname AS users_fullname,users.password AS users_password
FROM users
WHERE users.name LIKE ? ORDER BY users.idLIMIT ? OFFSET ?
('%ed', 1, 0)<User('ed','Ed Jones', 'f8s7ccs')>

one()方法,完整的提取所有的记录行,并且如果没有明确的一条记录行(没有找到这条记录)或者结果中存在多条记录行,将会引发错误异常NoResultFound或者MultipleResultsFound

>>> from sqlalchemy.orm.exc import MultipleResultsFound
>>> try: 
...     user = query.one()
... except MultipleResultsFound, e:
...     print e
SELECT users.id AS users_id,users.name AS users_name,users.fullname AS users_fullname,users.password AS users_password
FROM users
WHERE users.name LIKE ? ORDER BY users.id
('%ed',)Multiple rows were found for one()
>>> from sqlalchemy.orm.exc import NoResultFound
>>> try: 
...     user = query.filter(User.id == 99).one()
... except NoResultFound, e:
...     print e
SELECT users.id AS users_id,users.name AS users_name,users.fullname AS users_fullname,users.password AS users_password
FROM users
WHERE users.name LIKE ? AND users.id = ? ORDER BY users.id
('%ed', 99)No row was found for one()

2. 使用原义SQL (Literal SQL)

Query对象能够灵活的使用原义SQL查询字符串作为查询参数,比如我们之前用过的filter()order_by()方法:

>>> for user in session.query(User).\
...             filter("id<224").\
...             order_by("id").all(): 
...     print user.name
SELECT users.id AS users_id,users.name AS users_name,users.fullname AS users_fullname,users.password AS users_password
FROM users
WHERE id<224 ORDER BY id
()ed
wendy
mary
fred

当然很多人可能会和我感觉一样,会有些不适应,因为使用ORM就是为了摆脱SQL语句的,没想到现在又看到SQL的影子了。呵呵,SQLAlchemy也要照顾到使用上的灵活性嘛,毕竟有些查询语句直接编入要容易得多。

当然绑定参数也可以用基于字符串的SQL指派,使用冒号来标记替代参数,然后再使用params()方法指定相应的值:

>>> session.query(User).filter("id<:value and name=:name").\
...     params(value=224, name='fred').order_by(User.id).one() 
SELECT users.id AS users_id,users.name AS users_name,users.fullname AS users_fullname,users.password AS users_password
FROM users
WHERE id<User('fred','Fred Flinstone', 'blah')>

到这里,SQL语句的样子已经初见端倪了,其实我们可以更极端一点,直接使用SQL语句,什么?这样就失去ORM的价值了!别急,这里只是介绍一下支持这种用法,当然我建议不到万不得已,尽量不要这样写,因为可能会有兼容的问题,毕竟各个数据库的SQL方言不一样。不过有一点需要注意的是,如果要直接使用原生SQL语句,在被query()所查询的映射类中,你必须保证语句所指代的列仍然被映射类所管理,比如接下来的例子:

>>> session.query(User).from_statement(
...                     "SELECT * FROM users where name=:name").\
...                     params(name='ed').all()
SELECT * FROM users where name=?
('ed',)[<User('ed','Ed Jones', 'f8s7ccs')>]

我们还可以在query()中直接使用列名来指派我们想要的列而摆脱映射类的束缚:

>>> session.query("id", "name", "thenumber12").\
...         from_statement("SELECT id, name, 12 as "
...                 "thenumber12 FROM users where name=:name").\
...                 params(name='ed').all()
SELECT id, name, 12 as thenumber12 FROM users where name=?
('ed',)[(1, u'ed', 12)]

3. 计数 (Counting)

对于Query来说,计数功能也有个单独的方法称为count()

>>> session.query(User).filter(User.name.like('%ed')).count() 
SELECT count(*) AS count_1
FROM (SELECT users.id AS users_id,users.name AS users_name,users.fullname AS users_fullname,users.password AS users_password
FROM users
WHERE users.name LIKE ?) AS anon_1
('%ed',)2

count()方法被用于确定返回的结果集中有多少行,让我们观察一下产生的SQL语句,SQLAlchemy先是取出符合条件的所有行集合,然后再通过SELECT count(*)来统计有多少行。当然有点SQL知识的同学可能知道这条语句可以以更精简的方式写出来,比如SELECT count(*) FROM table,当然现代版本的SQLAlchemy不会去揣摩这样的想法。

假使我们要让查询语句更加精炼或者要明确要统计的列,我们可以通过表达式func.count()直接使用count函数,比如下面的例子介绍统计并返回每个唯一的用户名字:

>>> from sqlalchemy import func
>>> session.query(func.count(User.name), User.name).group_by(User.name).all()  
SELECT count(users.name) AS count_1, users.name AS users_name
FROM users GROUP BY users.name
()[(1, u'ed'), (1, u'fred'), (1, u'mary'), (1, u'wendy')]

对于刚才提到的简单SELECT count(*) FROM table语句,我们可以通过下面的例子来实现:

>>> session.query(func.count('*')).select_from(User).scalar()
SELECT count(?) AS count_1
FROM users
('*',)4

当然如果我们直接统计User的主键,上面的语句可以更加简练,我们可以省去select_from()方法:

>>> session.query(func.count(User.id)).scalar() 
SELECT count(users.id) AS count_1
FROM users
()4

好了,今天的内容到这里就介绍完了,感觉今天略有仓促,如有不当地方还望指出,谢谢。

这篇关于Python数据库ORM SQLAlchemy 0.7学习笔记(6) 查询的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1023848

相关文章

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

Linux下MySQL数据库定时备份脚本与Crontab配置教学

《Linux下MySQL数据库定时备份脚本与Crontab配置教学》在生产环境中,数据库是核心资产之一,定期备份数据库可以有效防止意外数据丢失,本文将分享一份MySQL定时备份脚本,并讲解如何通过cr... 目录备份脚本详解脚本功能说明授权与可执行权限使用 Crontab 定时执行编辑 Crontab添加定

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚