利用Python处理DAX多条件替换

2024-06-02 10:12
文章标签 python 条件 处理 替换 dax

本文主要是介绍利用Python处理DAX多条件替换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

小A:白茶,救命啊~~~

白茶:什么情况?

小A:是这样的,最近不是临近项目上线嘛,有一大波度量值需要进行类似的调整,一个两个倒没啥,600多个,兄弟,救命啊~~~

白茶(假装沉思):兄弟,你这个事不好搞啊!

小A(眼神暗示):放心 ,规矩我懂!

白茶:开搞开搞!

在实际业务场景中,上述情况产生的频率是非常高的,究其根本,其实有三种原因:

  • 业务逻辑在频繁的改动,牵一发而动全身

  • 数据来源驳杂而不唯一

  • KPI指标过多,观察口径统一

举个例子

假设现在存在以下度量值:

Amt = 
SUMX ( 'Fact_Sales', 'Fact_Sales'[Quantity] * RELATED ( Dim_Product[Price] ) )
Qty = 
SUM ( 'Fact_Sales'[Quantity] )
AmtUnit = 
SWITCH (SELECTEDVALUE ( Config_Unit[UnitOrder] ),1, [Amt],2, [Amt] / 1000,3, [Amt] / 7.2,4,[Amt] / 7.2 / 1000
)
QtyUnit =
SWITCH (SELECTEDVALUE ( Config_Unit[UnitOrder] ),1, [Qty],2, [Qty] / 1000,3, [Qty],4, [Qty] / 1000
)
AmtData = 
SWITCH (SELECTEDVALUE ( Config_Date[DateOrder] ),1, [AmtUnit],2, CALCULATE ( [AmtUnit], DATESQTD ( 'Dim_Date'[Date] ) ),3, CALCULATE ( [AmtUnit], DATESYTD ( 'Dim_Date'[Date] ) )
)
QtyData = 
SWITCH (SELECTEDVALUE ( Config_Date[DateOrder] ),1, [QtyUnit],2, CALCULATE ( [QtyUnit], DATESQTD ( 'Dim_Date'[Date] ) ),3, CALCULATE ( [QtyUnit], DATESYTD ( 'Dim_Date'[Date] ) )
)

其前端页面展示如下:

在这里插入图片描述

在上图示例中,我们不难发现,Unit类型的度量值是为了切换单位使用的,而DataType是为了切换观测周期使用的,例如查看当月值、季度累计、年累计。

现在我们需要将上述代码中的数字,切换为文本类型,例如:Unit中的1,切换成RMB,DataType中的1切换成MTH,以此类推。

如果仅是上图这几个度量值,那么修改起来是非常简单的,但是如果“数据量级很大”,且“度量值很多”,这种情况下我们修改起来是很头疼的,有没有一种便捷的方法能解决这个问题呢?

解决方案

看到这里,相信有的小伙伴已经意识到了,这种多条件判断,且多条件替换的场景,可以用正则来解决。

但是还可以深化,如果我不会正则怎么办?

我们可以在Python中使用正则来解决此问题,利用通用的Python代码,后续有复用场景仅需微调即可。

代码如下:

import re# 样例数据
text = """
在这里输入需要替换的文本
"""# 定义替换规则
replacement_dict = {'条件1': '替换1','条件2': '替换2','条件3': '替换3'
}# 定义替换函数
def replace_func(match):return f'{replacement_dict[match.group(1)]},'# 正则替换
pattern = re.compile(r'\b(1|2|3),')
result = pattern.sub(replace_func, text)print(result)

我们来看一下结果输出:
在这里插入图片描述
在这里插入图片描述

最近因为工作原因,停更了一段时间,还请小伙伴们见谅哦。
后面如果时间充足,白茶还会继续更新的哦,嘿嘿。

在这里插入图片描述
在这里插入图片描述

这篇关于利用Python处理DAX多条件替换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1023678

相关文章

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python ZIP文件操作技巧详解

《PythonZIP文件操作技巧详解》在数据处理和系统开发中,ZIP文件操作是开发者必须掌握的核心技能,Python标准库提供的zipfile模块以简洁的API和跨平台特性,成为处理ZIP文件的首选... 目录一、ZIP文件操作基础三板斧1.1 创建压缩包1.2 解压操作1.3 文件遍历与信息获取二、进阶技

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

一文详解Java异常处理你都了解哪些知识

《一文详解Java异常处理你都了解哪些知识》:本文主要介绍Java异常处理的相关资料,包括异常的分类、捕获和处理异常的语法、常见的异常类型以及自定义异常的实现,文中通过代码介绍的非常详细,需要的朋... 目录前言一、什么是异常二、异常的分类2.1 受检异常2.2 非受检异常三、异常处理的语法3.1 try-

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Java Response返回值的最佳处理方案

《JavaResponse返回值的最佳处理方案》在开发Web应用程序时,我们经常需要通过HTTP请求从服务器获取响应数据,这些数据可以是JSON、XML、甚至是文件,本篇文章将详细解析Java中处理... 目录摘要概述核心问题:关键技术点:源码解析示例 1:使用HttpURLConnection获取Resp

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py