STM32作业实现(六)闪存保存数据

2024-06-02 09:36

本文主要是介绍STM32作业实现(六)闪存保存数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

STM32作业设计
STM32作业实现(一)串口通信
STM32作业实现(二)串口控制led
STM32作业实现(三)串口控制有源蜂鸣器
STM32作业实现(四)光敏传感器
STM32作业实现(五)温湿度传感器dht11
STM32作业实现(六)闪存保存数据
STM32作业实现(七)OLED显示数据
STM32作业实现(八)触摸按键TPAD
STM32作业实现(九)驱动舵机
源码位置

打开w25q128所需引脚(SPI)

在这里插入图片描述
在这里插入图片描述

选择spi模式
在这里插入图片描述
注意:我这里使用片选引脚软件模拟方式
打开片选引脚
在这里插入图片描述
使用tim2用于w25q1238计时(微秒级)
在这里插入图片描述
编写w25q128驱动文件
w25q128.h

#ifndef __W25Q128_H__
#define __W25Q128_H__#include "main.h"
#include "gpio.h"
#include "tim.h"
#include "spi.h"extern uint8_t W25QXX_BUFFER[4096];//w25q128读写指令表
#define W25X_WriteEnable       0x06
#define W25X_WriteDisable      0x04
#define W25X_ReadStatusReg     0x05
#define W25X_WriteStatusReg    0x01
#define W25X_ReadData          0x03
#define W25X_FastReadData      0x0B
#define W25X_FastReadDual      0x3B
#define W25X_PageProgram       0x02
#define W25X_BlockErase        0xD8
#define W25X_SectorErase       0x20
#define W25X_ChipErase         0xC7
#define W25X_PowerDown         0xB9
#define W25X_ReleasePowerDown  0xAB
#define W25X_ManufactDeviceID  0x90
#define W25X_JedecDeviceID     0x9F#define W25_CS_L  HAL_GPIO_WritePin(GPIOB, GPIO_PIN_12, GPIO_PIN_RESET)
#define W25_CS_H  HAL_GPIO_WritePin(GPIOB, GPIO_PIN_12, GPIO_PIN_SET)uint16_t  W25QXX_ReadID(void);//读取FLASH IDvoid W25QXX_Read(uint8_t* pBuffer,uint32_t ReadAddr,uint16_t NumByteToRead);//读取flash
void W25QXX_Write(uint8_t* pBuffer,uint32_t WriteAddr,uint16_t NumByteToWrite);//写入flashvoid W25QXX_Erase_Chip(void);  //整片擦除
void W25QXX_Erase_Sector(uint32_t Dst_Addr);//扇区擦除void W25QXX_PowerDown(void);//进入掉电模式
void W25QXX_WAKEUP(void);//唤醒#endif

w25q128.c

#include "w25q128.h"// 微秒级延时函数(向下)
void Delay_Us(uint16_t us)
{uint16_t dif = 10000;uint16_t us_con = 10000 - us;htim2.Instance->CNT = 10000; // 设置计数值为10000HAL_TIM_Base_Start(&htim2);while (dif > us_con){dif = __HAL_TIM_GET_COUNTER(&htim2);}HAL_TIM_Base_Stop(&htim2);
}/***********************************
封装读写操作
SPI 读写一个字节
TxData:要写入的字节
返回值:读取到的字节
*************************************/
uint8_t SPI2_ReadWriteByte(uint8_t TxData)
{uint8_t Rxdata;HAL_SPI_TransmitReceive(&hspi2, &TxData, &Rxdata, 1, 1000);return Rxdata;
}
/*********************************************************************      :
BIT:   7    6    5    4    3    2    1    0SPR  RV   TB   BP2  BP1  BP0  WEL  BUSY
SPR:默认0,状态寄存器保护位,配合WP使用
TB,BP2,BP1,BP0:FLASH区域写保护设置
WEL:写使能锁定
BUSY:忙标记位(1,忙;0,空闲)
默认:0x00
**********************************************************************/
uint8_t W25QXX_ReadSR(void)
{uint8_t byte = 0;W25_CS_L;                               // 使能器件SPI2_ReadWriteByte(W25X_ReadStatusReg); // 发送读取状态寄存器命令byte = SPI2_ReadWriteByte(0xff);        // 读取一个字节W25_CS_H;                               // 取消片选return byte;
}// 写SPI_FLASH状态寄存器
// 只有SPR,TB,BP2,BP1,BP0(bit 7,5,4,3,2)可以写!!!
void W25QXX_Write_SR(uint8_t sr)
{W25_CS_L;                                // 使能器件SPI2_ReadWriteByte(W25X_WriteStatusReg); // 发送写取状态寄存器命令SPI2_ReadWriteByte(sr);                  // 写入一个字节W25_CS_H;                                // 取消片选
}// 等待空闲
void W25QXX_Wait_Busy(void)
{while ((W25QXX_ReadSR() & 0x01) == 0x01); // 等待BUSY位清空
}// SPI_FLASH写使能
// 将WEL置位
void W25QXX_Write_Enable(void)
{W25_CS_L;                             // 使能器件SPI2_ReadWriteByte(W25X_WriteEnable); // 发送写使能W25_CS_H;                             // 取消片选
}// SPI_FLASH写禁止
// 将WEL清零
void W25QXX_Write_Disable(void)
{W25_CS_L;                              // 使能器件SPI2_ReadWriteByte(W25X_WriteDisable); // 发送写禁止指令W25_CS_H;                              // 取消片选
}// 读取芯片ID W25X16的ID:0XEF14
uint16_t W25QXX_ReadID(void)
{uint16_t Temp = 0;W25_CS_L;                                  // 使能器件SPI2_ReadWriteByte(W25X_ManufactDeviceID); // 发送读取ID命令SPI2_ReadWriteByte(0x00);SPI2_ReadWriteByte(0x00);SPI2_ReadWriteByte(0x00);Temp |= SPI2_ReadWriteByte(0xFF) << 8;Temp |= SPI2_ReadWriteByte(0xFF);W25_CS_H; // 取消片选return Temp;
}// 读取SPI FLASH
// 在指定地址开始读取指定长度的数据
// pBuffer:数据存储区
// ReadAddr:开始读取的地址(24bit)
// NumByteToRead:要读取的字节数(最大65535)
void W25QXX_Read(uint8_t *pBuffer, uint32_t ReadAddr, uint16_t NumByteToRead)
{uint16_t i;W25_CS_L;                                        // 使能器件SPI2_ReadWriteByte(W25X_ReadData);               // 发送读取命令SPI2_ReadWriteByte((uint8_t)((ReadAddr) >> 16)); // 发送24bit地址SPI2_ReadWriteByte((uint8_t)((ReadAddr) >> 8));SPI2_ReadWriteByte((uint8_t)ReadAddr);for (i = 0; i < NumByteToRead; i++){pBuffer[i] = SPI2_ReadWriteByte(0XFF); // 循环读数}W25_CS_H; // 取消片选
}// SPI在一页(0~65535)内写入少于256个字节的数据
// 在指定地址开始写入最大256字节的数据
// pBuffer:数据存储区
// WriteAddr:开始写入的地址(24bit)
// NumByteToWrite:要写入的字节数(最大256),该数不应该超过该页的剩余字节数!!!
void W25QXX_Write_Page(uint8_t *pBuffer, uint32_t WriteAddr, uint16_t NumByteToWrite)
{uint16_t i;W25QXX_Write_Enable();                            // SET WELW25_CS_L;                                         // 使能器件SPI2_ReadWriteByte(W25X_PageProgram);             // 发送写页命令SPI2_ReadWriteByte((uint8_t)((WriteAddr) >> 16)); // 发送24bit地址SPI2_ReadWriteByte((uint8_t)((WriteAddr) >> 8));SPI2_ReadWriteByte((uint8_t)WriteAddr);for (i = 0; i < NumByteToWrite; i++)SPI2_ReadWriteByte(pBuffer[i]); // 循环写数W25_CS_H;                         // 取消片选W25QXX_Wait_Busy();               // 等待写入结束
}// 无检验写SPI FLASH
// 必须确保所写的地址范围内的数据全部为0XFF,否则在非0XFF处写入的数据将失败!
// 具有自动换页功能
// 在指定地址开始写入指定长度的数据,但是要确保地址不越界!
// pBuffer:数据存储区
// WriteAddr:开始写入的地址(24bit)
// NumByteToWrite:要写入的字节数(最大65535)
// CHECK OK
void W25QXX_Write_NoCheck(uint8_t *pBuffer, uint32_t WriteAddr, uint16_t NumByteToWrite)
{uint16_t pageremain;pageremain = 256 - WriteAddr % 256; // 单页剩余的字节数if (NumByteToWrite <= pageremain)pageremain = NumByteToWrite; // 不大于256个字节while (1){W25QXX_Write_Page(pBuffer, WriteAddr, pageremain);if (NumByteToWrite == pageremain)break; // 写入结束了else     // NumByteToWrite>pageremain{pBuffer += pageremain;WriteAddr += pageremain;NumByteToWrite -= pageremain; // 减去已经写入了的字节数if (NumByteToWrite > 256)pageremain = 256; // 一次可以写入256个字节elsepageremain = NumByteToWrite; // 不够256个字节了}};
}// 写SPI FLASH
// 在指定地址开始写入指定长度的数据
// 该函数带擦除操作!
// pBuffer:数据存储区
// WriteAddr:开始写入的地址(24bit)
// NumByteToWrite:要写入的字节数(最大65535)
uint8_t W25QXX_BUFFER[4096];
void W25QXX_Write(uint8_t *pBuffer, uint32_t WriteAddr, uint16_t NumByteToWrite)
{uint32_t secpos;uint16_t secoff;uint16_t secremain;uint16_t i;secpos = WriteAddr / 4096; // 扇区地址 0~511 for w25x16secoff = WriteAddr % 4096; // 在扇区内的偏移secremain = 4096 - secoff; // 扇区剩余空间大小if (NumByteToWrite <= secremain)secremain = NumByteToWrite; // 不大于4096个字节while (1){W25QXX_Read(W25QXX_BUFFER, secpos * 4096, 4096); // 读出整个扇区的内容for (i = 0; i < secremain; i++)                  // 校验数据{if (W25QXX_BUFFER[secoff + i] != 0XFF)break; // 需要擦除}if (i < secremain) // 需要擦除{W25QXX_Erase_Sector(secpos);    // 擦除这个扇区for (i = 0; i < secremain; i++) // 复制{W25QXX_BUFFER[i + secoff] = pBuffer[i];}W25QXX_Write_NoCheck(W25QXX_BUFFER, secpos * 4096, 4096); // 写入整个扇区}elseW25QXX_Write_NoCheck(pBuffer, WriteAddr, secremain); // 写已经擦除了的,直接写入扇区剩余区间.if (NumByteToWrite == secremain)break; // 写入结束了else     // 写入未结束{secpos++;   // 扇区地址增1secoff = 0; // 偏移位置为0pBuffer += secremain;        // 指针偏移WriteAddr += secremain;      // 写地址偏移NumByteToWrite -= secremain; // 字节数递减if (NumByteToWrite > 4096)secremain = 4096; // 下一个扇区还是写不完elsesecremain = NumByteToWrite; // 下一个扇区可以写完了}};
}// 擦除整个芯片
// 整片擦除时间:
// W25X16:25s
// W25X32:40s
// W25X64:40s
// 等待时间超长...
void W25QXX_Erase_Chip(void)
{W25QXX_Write_Enable(); // SET WELW25QXX_Wait_Busy();W25_CS_L;                           // 使能器件SPI2_ReadWriteByte(W25X_ChipErase); // 发送片擦除命令W25_CS_H;                           // 取消片选W25QXX_Wait_Busy();                 // 等待芯片擦除结束
}// 擦除一个扇区
// Dst_Addr:扇区地址 0~511 for w25x16
// 擦除一个扇区的最少时间:150ms
void W25QXX_Erase_Sector(uint32_t Dst_Addr)
{Dst_Addr *= 4096;W25QXX_Write_Enable(); // SET WELW25QXX_Wait_Busy();W25_CS_L;                                        // 使能器件SPI2_ReadWriteByte(W25X_SectorErase);            // 发送扇区擦除指令SPI2_ReadWriteByte((uint8_t)((Dst_Addr) >> 16)); // 发送24bit地址SPI2_ReadWriteByte((uint8_t)((Dst_Addr) >> 8));SPI2_ReadWriteByte((uint8_t)Dst_Addr);W25_CS_H;           // 取消片选W25QXX_Wait_Busy(); // 等待擦除完成
}// 进入掉电模式
void W25QXX_PowerDown(void)
{W25_CS_L;                           // 使能器件SPI2_ReadWriteByte(W25X_PowerDown); // 发送掉电命令W25_CS_H;                           // 取消片选Delay_Us(3);                        // 等待TPD
}// 唤醒
void W25QXX_WAKEUP(void)
{W25_CS_L;                                  // 使能器件SPI2_ReadWriteByte(W25X_ReleasePowerDown); // send W25X_PowerDown command 0xABW25_CS_H;                                  // 取消片选Delay_Us(3);                               // 等待TPD
}

参考文章:STM32F030 HAL库硬件SPI操作W25Q16存储芯片(二)

这篇关于STM32作业实现(六)闪存保存数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1023592

相关文章

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义