STM32作业实现(六)闪存保存数据

2024-06-02 09:36

本文主要是介绍STM32作业实现(六)闪存保存数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

STM32作业设计
STM32作业实现(一)串口通信
STM32作业实现(二)串口控制led
STM32作业实现(三)串口控制有源蜂鸣器
STM32作业实现(四)光敏传感器
STM32作业实现(五)温湿度传感器dht11
STM32作业实现(六)闪存保存数据
STM32作业实现(七)OLED显示数据
STM32作业实现(八)触摸按键TPAD
STM32作业实现(九)驱动舵机
源码位置

打开w25q128所需引脚(SPI)

在这里插入图片描述
在这里插入图片描述

选择spi模式
在这里插入图片描述
注意:我这里使用片选引脚软件模拟方式
打开片选引脚
在这里插入图片描述
使用tim2用于w25q1238计时(微秒级)
在这里插入图片描述
编写w25q128驱动文件
w25q128.h

#ifndef __W25Q128_H__
#define __W25Q128_H__#include "main.h"
#include "gpio.h"
#include "tim.h"
#include "spi.h"extern uint8_t W25QXX_BUFFER[4096];//w25q128读写指令表
#define W25X_WriteEnable       0x06
#define W25X_WriteDisable      0x04
#define W25X_ReadStatusReg     0x05
#define W25X_WriteStatusReg    0x01
#define W25X_ReadData          0x03
#define W25X_FastReadData      0x0B
#define W25X_FastReadDual      0x3B
#define W25X_PageProgram       0x02
#define W25X_BlockErase        0xD8
#define W25X_SectorErase       0x20
#define W25X_ChipErase         0xC7
#define W25X_PowerDown         0xB9
#define W25X_ReleasePowerDown  0xAB
#define W25X_ManufactDeviceID  0x90
#define W25X_JedecDeviceID     0x9F#define W25_CS_L  HAL_GPIO_WritePin(GPIOB, GPIO_PIN_12, GPIO_PIN_RESET)
#define W25_CS_H  HAL_GPIO_WritePin(GPIOB, GPIO_PIN_12, GPIO_PIN_SET)uint16_t  W25QXX_ReadID(void);//读取FLASH IDvoid W25QXX_Read(uint8_t* pBuffer,uint32_t ReadAddr,uint16_t NumByteToRead);//读取flash
void W25QXX_Write(uint8_t* pBuffer,uint32_t WriteAddr,uint16_t NumByteToWrite);//写入flashvoid W25QXX_Erase_Chip(void);  //整片擦除
void W25QXX_Erase_Sector(uint32_t Dst_Addr);//扇区擦除void W25QXX_PowerDown(void);//进入掉电模式
void W25QXX_WAKEUP(void);//唤醒#endif

w25q128.c

#include "w25q128.h"// 微秒级延时函数(向下)
void Delay_Us(uint16_t us)
{uint16_t dif = 10000;uint16_t us_con = 10000 - us;htim2.Instance->CNT = 10000; // 设置计数值为10000HAL_TIM_Base_Start(&htim2);while (dif > us_con){dif = __HAL_TIM_GET_COUNTER(&htim2);}HAL_TIM_Base_Stop(&htim2);
}/***********************************
封装读写操作
SPI 读写一个字节
TxData:要写入的字节
返回值:读取到的字节
*************************************/
uint8_t SPI2_ReadWriteByte(uint8_t TxData)
{uint8_t Rxdata;HAL_SPI_TransmitReceive(&hspi2, &TxData, &Rxdata, 1, 1000);return Rxdata;
}
/*********************************************************************      :
BIT:   7    6    5    4    3    2    1    0SPR  RV   TB   BP2  BP1  BP0  WEL  BUSY
SPR:默认0,状态寄存器保护位,配合WP使用
TB,BP2,BP1,BP0:FLASH区域写保护设置
WEL:写使能锁定
BUSY:忙标记位(1,忙;0,空闲)
默认:0x00
**********************************************************************/
uint8_t W25QXX_ReadSR(void)
{uint8_t byte = 0;W25_CS_L;                               // 使能器件SPI2_ReadWriteByte(W25X_ReadStatusReg); // 发送读取状态寄存器命令byte = SPI2_ReadWriteByte(0xff);        // 读取一个字节W25_CS_H;                               // 取消片选return byte;
}// 写SPI_FLASH状态寄存器
// 只有SPR,TB,BP2,BP1,BP0(bit 7,5,4,3,2)可以写!!!
void W25QXX_Write_SR(uint8_t sr)
{W25_CS_L;                                // 使能器件SPI2_ReadWriteByte(W25X_WriteStatusReg); // 发送写取状态寄存器命令SPI2_ReadWriteByte(sr);                  // 写入一个字节W25_CS_H;                                // 取消片选
}// 等待空闲
void W25QXX_Wait_Busy(void)
{while ((W25QXX_ReadSR() & 0x01) == 0x01); // 等待BUSY位清空
}// SPI_FLASH写使能
// 将WEL置位
void W25QXX_Write_Enable(void)
{W25_CS_L;                             // 使能器件SPI2_ReadWriteByte(W25X_WriteEnable); // 发送写使能W25_CS_H;                             // 取消片选
}// SPI_FLASH写禁止
// 将WEL清零
void W25QXX_Write_Disable(void)
{W25_CS_L;                              // 使能器件SPI2_ReadWriteByte(W25X_WriteDisable); // 发送写禁止指令W25_CS_H;                              // 取消片选
}// 读取芯片ID W25X16的ID:0XEF14
uint16_t W25QXX_ReadID(void)
{uint16_t Temp = 0;W25_CS_L;                                  // 使能器件SPI2_ReadWriteByte(W25X_ManufactDeviceID); // 发送读取ID命令SPI2_ReadWriteByte(0x00);SPI2_ReadWriteByte(0x00);SPI2_ReadWriteByte(0x00);Temp |= SPI2_ReadWriteByte(0xFF) << 8;Temp |= SPI2_ReadWriteByte(0xFF);W25_CS_H; // 取消片选return Temp;
}// 读取SPI FLASH
// 在指定地址开始读取指定长度的数据
// pBuffer:数据存储区
// ReadAddr:开始读取的地址(24bit)
// NumByteToRead:要读取的字节数(最大65535)
void W25QXX_Read(uint8_t *pBuffer, uint32_t ReadAddr, uint16_t NumByteToRead)
{uint16_t i;W25_CS_L;                                        // 使能器件SPI2_ReadWriteByte(W25X_ReadData);               // 发送读取命令SPI2_ReadWriteByte((uint8_t)((ReadAddr) >> 16)); // 发送24bit地址SPI2_ReadWriteByte((uint8_t)((ReadAddr) >> 8));SPI2_ReadWriteByte((uint8_t)ReadAddr);for (i = 0; i < NumByteToRead; i++){pBuffer[i] = SPI2_ReadWriteByte(0XFF); // 循环读数}W25_CS_H; // 取消片选
}// SPI在一页(0~65535)内写入少于256个字节的数据
// 在指定地址开始写入最大256字节的数据
// pBuffer:数据存储区
// WriteAddr:开始写入的地址(24bit)
// NumByteToWrite:要写入的字节数(最大256),该数不应该超过该页的剩余字节数!!!
void W25QXX_Write_Page(uint8_t *pBuffer, uint32_t WriteAddr, uint16_t NumByteToWrite)
{uint16_t i;W25QXX_Write_Enable();                            // SET WELW25_CS_L;                                         // 使能器件SPI2_ReadWriteByte(W25X_PageProgram);             // 发送写页命令SPI2_ReadWriteByte((uint8_t)((WriteAddr) >> 16)); // 发送24bit地址SPI2_ReadWriteByte((uint8_t)((WriteAddr) >> 8));SPI2_ReadWriteByte((uint8_t)WriteAddr);for (i = 0; i < NumByteToWrite; i++)SPI2_ReadWriteByte(pBuffer[i]); // 循环写数W25_CS_H;                         // 取消片选W25QXX_Wait_Busy();               // 等待写入结束
}// 无检验写SPI FLASH
// 必须确保所写的地址范围内的数据全部为0XFF,否则在非0XFF处写入的数据将失败!
// 具有自动换页功能
// 在指定地址开始写入指定长度的数据,但是要确保地址不越界!
// pBuffer:数据存储区
// WriteAddr:开始写入的地址(24bit)
// NumByteToWrite:要写入的字节数(最大65535)
// CHECK OK
void W25QXX_Write_NoCheck(uint8_t *pBuffer, uint32_t WriteAddr, uint16_t NumByteToWrite)
{uint16_t pageremain;pageremain = 256 - WriteAddr % 256; // 单页剩余的字节数if (NumByteToWrite <= pageremain)pageremain = NumByteToWrite; // 不大于256个字节while (1){W25QXX_Write_Page(pBuffer, WriteAddr, pageremain);if (NumByteToWrite == pageremain)break; // 写入结束了else     // NumByteToWrite>pageremain{pBuffer += pageremain;WriteAddr += pageremain;NumByteToWrite -= pageremain; // 减去已经写入了的字节数if (NumByteToWrite > 256)pageremain = 256; // 一次可以写入256个字节elsepageremain = NumByteToWrite; // 不够256个字节了}};
}// 写SPI FLASH
// 在指定地址开始写入指定长度的数据
// 该函数带擦除操作!
// pBuffer:数据存储区
// WriteAddr:开始写入的地址(24bit)
// NumByteToWrite:要写入的字节数(最大65535)
uint8_t W25QXX_BUFFER[4096];
void W25QXX_Write(uint8_t *pBuffer, uint32_t WriteAddr, uint16_t NumByteToWrite)
{uint32_t secpos;uint16_t secoff;uint16_t secremain;uint16_t i;secpos = WriteAddr / 4096; // 扇区地址 0~511 for w25x16secoff = WriteAddr % 4096; // 在扇区内的偏移secremain = 4096 - secoff; // 扇区剩余空间大小if (NumByteToWrite <= secremain)secremain = NumByteToWrite; // 不大于4096个字节while (1){W25QXX_Read(W25QXX_BUFFER, secpos * 4096, 4096); // 读出整个扇区的内容for (i = 0; i < secremain; i++)                  // 校验数据{if (W25QXX_BUFFER[secoff + i] != 0XFF)break; // 需要擦除}if (i < secremain) // 需要擦除{W25QXX_Erase_Sector(secpos);    // 擦除这个扇区for (i = 0; i < secremain; i++) // 复制{W25QXX_BUFFER[i + secoff] = pBuffer[i];}W25QXX_Write_NoCheck(W25QXX_BUFFER, secpos * 4096, 4096); // 写入整个扇区}elseW25QXX_Write_NoCheck(pBuffer, WriteAddr, secremain); // 写已经擦除了的,直接写入扇区剩余区间.if (NumByteToWrite == secremain)break; // 写入结束了else     // 写入未结束{secpos++;   // 扇区地址增1secoff = 0; // 偏移位置为0pBuffer += secremain;        // 指针偏移WriteAddr += secremain;      // 写地址偏移NumByteToWrite -= secremain; // 字节数递减if (NumByteToWrite > 4096)secremain = 4096; // 下一个扇区还是写不完elsesecremain = NumByteToWrite; // 下一个扇区可以写完了}};
}// 擦除整个芯片
// 整片擦除时间:
// W25X16:25s
// W25X32:40s
// W25X64:40s
// 等待时间超长...
void W25QXX_Erase_Chip(void)
{W25QXX_Write_Enable(); // SET WELW25QXX_Wait_Busy();W25_CS_L;                           // 使能器件SPI2_ReadWriteByte(W25X_ChipErase); // 发送片擦除命令W25_CS_H;                           // 取消片选W25QXX_Wait_Busy();                 // 等待芯片擦除结束
}// 擦除一个扇区
// Dst_Addr:扇区地址 0~511 for w25x16
// 擦除一个扇区的最少时间:150ms
void W25QXX_Erase_Sector(uint32_t Dst_Addr)
{Dst_Addr *= 4096;W25QXX_Write_Enable(); // SET WELW25QXX_Wait_Busy();W25_CS_L;                                        // 使能器件SPI2_ReadWriteByte(W25X_SectorErase);            // 发送扇区擦除指令SPI2_ReadWriteByte((uint8_t)((Dst_Addr) >> 16)); // 发送24bit地址SPI2_ReadWriteByte((uint8_t)((Dst_Addr) >> 8));SPI2_ReadWriteByte((uint8_t)Dst_Addr);W25_CS_H;           // 取消片选W25QXX_Wait_Busy(); // 等待擦除完成
}// 进入掉电模式
void W25QXX_PowerDown(void)
{W25_CS_L;                           // 使能器件SPI2_ReadWriteByte(W25X_PowerDown); // 发送掉电命令W25_CS_H;                           // 取消片选Delay_Us(3);                        // 等待TPD
}// 唤醒
void W25QXX_WAKEUP(void)
{W25_CS_L;                                  // 使能器件SPI2_ReadWriteByte(W25X_ReleasePowerDown); // send W25X_PowerDown command 0xABW25_CS_H;                                  // 取消片选Delay_Us(3);                               // 等待TPD
}

参考文章:STM32F030 HAL库硬件SPI操作W25Q16存储芯片(二)

这篇关于STM32作业实现(六)闪存保存数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1023592

相关文章

springboot+redis实现订单过期(超时取消)功能的方法详解

《springboot+redis实现订单过期(超时取消)功能的方法详解》在SpringBoot中使用Redis实现订单过期(超时取消)功能,有多种成熟方案,本文为大家整理了几个详细方法,文中的示例代... 目录一、Redis键过期回调方案(推荐)1. 配置Redis监听器2. 监听键过期事件3. Redi

SpringBoot全局异常拦截与自定义错误页面实现过程解读

《SpringBoot全局异常拦截与自定义错误页面实现过程解读》本文介绍了SpringBoot中全局异常拦截与自定义错误页面的实现方法,包括异常的分类、SpringBoot默认异常处理机制、全局异常拦... 目录一、引言二、Spring Boot异常处理基础2.1 异常的分类2.2 Spring Boot默

基于SpringBoot实现分布式锁的三种方法

《基于SpringBoot实现分布式锁的三种方法》这篇文章主要为大家详细介绍了基于SpringBoot实现分布式锁的三种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、基于Redis原生命令实现分布式锁1. 基础版Redis分布式锁2. 可重入锁实现二、使用Redisso

SpringBoo WebFlux+MongoDB实现非阻塞API过程

《SpringBooWebFlux+MongoDB实现非阻塞API过程》本文介绍了如何使用SpringBootWebFlux和MongoDB实现非阻塞API,通过响应式编程提高系统的吞吐量和响应性能... 目录一、引言二、响应式编程基础2.1 响应式编程概念2.2 响应式编程的优势2.3 响应式编程相关技术

C#实现将XML数据自动化地写入Excel文件

《C#实现将XML数据自动化地写入Excel文件》在现代企业级应用中,数据处理与报表生成是核心环节,本文将深入探讨如何利用C#和一款优秀的库,将XML数据自动化地写入Excel文件,有需要的小伙伴可以... 目录理解XML数据结构与Excel的对应关系引入高效工具:使用Spire.XLS for .NETC

Nginx更新SSL证书的实现步骤

《Nginx更新SSL证书的实现步骤》本文主要介绍了Nginx更新SSL证书的实现步骤,包括下载新证书、备份旧证书、配置新证书、验证配置及遇到问题时的解决方法,感兴趣的了解一下... 目录1 下载最新的SSL证书文件2 备份旧的SSL证书文件3 配置新证书4 验证配置5 遇到的http://www.cppc

Nginx之https证书配置实现

《Nginx之https证书配置实现》本文主要介绍了Nginx之https证书配置的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起... 目录背景介绍为什么不能部署在 IIS 或 NAT 设备上?具体实现证书获取nginx配置扩展结果验证

SpringBoot整合 Quartz实现定时推送实战指南

《SpringBoot整合Quartz实现定时推送实战指南》文章介绍了SpringBoot中使用Quartz动态定时任务和任务持久化实现多条不确定结束时间并提前N分钟推送的方案,本文结合实例代码给大... 目录前言一、Quartz 是什么?1、核心定位:解决什么问题?2、Quartz 核心组件二、使用步骤1

使用Redis实现会话管理的示例代码

《使用Redis实现会话管理的示例代码》文章介绍了如何使用Redis实现会话管理,包括会话的创建、读取、更新和删除操作,通过设置会话超时时间并重置,可以确保会话在用户持续活动期间不会过期,此外,展示了... 目录1. 会话管理的基本概念2. 使用Redis实现会话管理2.1 引入依赖2.2 会话管理基本操作

mybatis-plus分表实现案例(附示例代码)

《mybatis-plus分表实现案例(附示例代码)》MyBatis-Plus是一个MyBatis的增强工具,在MyBatis的基础上只做增强不做改变,为简化开发、提高效率而生,:本文主要介绍my... 目录文档说明数据库水平分表思路1. 为什么要水平分表2. 核心设计要点3.基于数据库水平分表注意事项示例