用贪心算法计算十进制数转二进制数(整数部分)

2024-06-02 09:12

本文主要是介绍用贪心算法计算十进制数转二进制数(整数部分),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

十进制整数转二进制数用什么方法?网上一搜,大部分答案都是用短除法,也就是除2反向取余法。这种方法是最基本最常用的,但是计算步骤多,还容易出错,那么还有没有其他更好的方法吗?

一、短除反向取余法

具体的步骤是不断将十进制数除以2,每次记录余数,直至商为0,然后把所有余数从下向上(反向)的顺序排列,即得到二进制数。

例如,把十进制数69转换为二进制数,结果为1000101,计算过程如图1所示。

图1 短除反向取余法

通过观察图1,可以看出:

69=1\times 2^{6}+0\times 2^{5}+0\times 2^{4}+0\times 2^{3}+1\times 2^{2}+0\times 2^{1}+1\times 2^{0}             (1)

一般表达式为:

a=\sum_{i=0}^{i=n}\left ( c_{i}\ast 2^{i} \right )c_{i}\in \left \{ 0,1 \right \}                                                (2)

十进制数转化为二进制数的结果就是把系数c_{i}i=ni=0(从最高位到最低位)的排列

如果把(1)式中的系数c_{_i}=0的项去掉,那么有

69=2^{6}+2^{2}+2^{0}                                                            (3)

也就是把十进制数转换为二进制的过程,实际上就是把十进制数转换为若干个以2为底的幂运算之和,那么一般表达式为:

a=\sum_{i=0}^{i=m}2^{n_{i}}                                                               (4)

在(3)式中,n_{0}=6n_{1}=2n_{2}=0

也就是在十进制的69转换为二进制后,数位序号为0,2,6的项系数为1,其他项系数都为0(数位序号从右向左依次增1,最低位序号为0),如表1所示,表格中橙色项系数为1,白色项系数为0。

表1 十进制数69的二进制转换结果

二进制数

1

0

0

0

1

0

1

位序号

6

5

4

3

2

1

0

位权重

64

32

16

8

4

21

二、贪心算法

那么如何快速求n_{i}呢?本人经过研究发现,利用贪心算法的思维,可以很好的解决这个问题。

1、贪心算法简介

贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的是在某种意义上的局部最优解。

2、操作步骤

假设十进制数为a,根据公式(4),用贪心算法思维进行十进制转二进制计算的步骤为:

(1)先找出a中最大的那一项2^{n_{i}},并记录{n_{i}}

(2)把最大项的值从a中减掉:a=a-2^{n_{i}}

(3)跳转到步骤(1)循环计算,直到a=0,计算结束。

例如,十进制数a=69,计算过程为:

(1)找出69中最大的项为64,也就是2^{6},记录n_{0}=6

(2)a=69-64=5

(3)找出5中最大的项为4,也就是2^{2},记录n_{1}=2

(4)a=5-4=1

(5)找出1中最大的项为1,也就是2^{0},记录n_{2}=0

(6)a=1-1=0,计算结束;

计算的结果为:69=2^{6}+2^{2}+2^{0}=64+4+1

二进制数位序号0,2,6的项为1,其他位序号的项为0,得到结果为1000101。

对比短除法和贪心法,可以发现,贪心算法计算步骤少,准确率也较高,不容易算错,但是需要我们事先记住一些常用的2^{n}的值,这样才有助于我们更快找出最大项。表2为0\leqslant n\leqslant 102^{n}的值。

表2 常用2为底幂的值

2^{n}2^{0}2^{1}2^{2}2^{3}2^{4}2^{5}2^{6}2^{7}2^{8}2^{9}2^{10}
12481632641282565121024

(本文结束)

这篇关于用贪心算法计算十进制数转二进制数(整数部分)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1023546

相关文章

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

如何将二进制文件流转化为MockMultipartFile文件

《如何将二进制文件流转化为MockMultipartFile文件》文章主要介绍了如何使用Spring框架中的MockMultipartFile类来模拟文件上传,并处理上传逻辑,包括获取二进制文件流、创... 目录一、名词解释及业务解释1.具体业务流程2.转换对象解释1. MockMultipartFile2

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig