数学建模 —— 灰色系统(4)

2024-06-02 07:12
文章标签 系统 建模 数学 灰色

本文主要是介绍数学建模 —— 灰色系统(4),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

什么是灰色系统?      

一、灰色关联分析

1.1 灰色关联分析模型

1.2 灰色关联因素和关联算子集

1.2.1 灰色关联因素

1.2.2 关联算子集

1.3 灰色关联公理与灰色关联度

1.3.1 灰色关联度

1.3.2 灰色关联度计算步骤

1.4 广义关联度

1.4.1 灰色绝对关联度

1.4.2 灰色相对关联度

1.4.3 灰色综合关联度

二、优势分析

2.1 灰色关联矩阵

2.2 几类灰色关联矩阵

2.3 系统优势关系

2.4 因素优势关系

2.5 系统准优势关系

2.6 准优特征与准优因素

三、生成数

3.1 累加生成数列

四、灰色模型(GM模型)

4.1 GM(1, 1)模型及定义

4.2 GM(1, 1)白化型

五、灰色预测

5.1 灰色预测的步骤

5.1.1 数据的检验与处理

5.1.2 建立模型

5.1.3 模型检验

5.2 数列预测


什么是灰色系统?      

        客观世界的很多实际问题,其内部的结构、参数以及特征并未全部被人们了解,人们不可能象研究白箱问题那样将其内部机理研究清楚,只能依据某种思维逻辑与推断来构造模型。对这类部分信息已知而部分信息未知的系统,我们称之为灰色系统。

一、灰色关联分析

1.1 灰色关联分析模型

        根据序列曲线几何形状的相似程度来判断其联系是否紧密曲线越接近,相应序列之间关联度就越大,反之就越小。

        灰色关联分析方法弥补了采用数理统计方法作系统分析所导致的缺憾。它对样本量的多少样本有无规律都同样适用,而且计算量小,十分方便,更不会出现量化结果与定性分析结果不符的情况

1.2 灰色关联因素和关联算子集

1.2.1 灰色关联因素

(1)行为序列

(2)行为时间序列

 

(3)行为指标序列

(4)行为横向序列

 

1.2.2 关联算子集

(1)初值化算子

(2)均值化算子

(3)区间值化算子

(4)逆化算子

(5)倒数化算子

(6)关联因子空间

1.3 灰色关联公理与灰色关联度

1.3.1 灰色关联度

1.3.2 灰色关联度计算步骤

e.g.

clc, clear
a=[0.83	 0.90	0.99	  0.92	0.87	  0.95
326	 295	 340  287	310	  303
21	 38	     25	  19	 27	  10
3.2	2.4	     2.2   2.0	 0.9   1.7
0.20	0.25	    0.12   0.33 	0.20	  0.09
0.15	0.20	    0.14   0.09	0.15   0.17
250	180	    300	   200	150   175
0.23	0.15	    0.27   0.30	0.18   0.26
0.87	0.95	    0.99	   0.89	0.82	  0.94];
for i=[1 5:9]    %效益型指标标准化a(i,:)=(a(i,:)-min(a(i,:)))/(max(a(i,:))-min(a(i,:)));
end
for i=2:4  %成本型指标标准化a(i,:)=(max(a(i,:))-a(i,:))/(max(a(i,:))-min(a(i,:))); 
end
[m,n]=size(a);
cankao=max(a')'  %求参考序列的取值
t=repmat(cankao,[1,n])-a;  %求参考序列与每一个序列的差
mmin=min(min(t));   %计算最小差
mmax=max(max(t));  %计算最大差
rho=0.5; %分辨系数
xishu=(mmin+rho*mmax)./(t+rho*mmax)  %计算灰色关联系数
guanliandu=mean(xishu)   %取等权重,计算关联度
[gsort,ind]=sort(guanliandu,'descend')  %对关联度按照从大到小排序

1.4 广义关联度

        三种关联度矩阵往往得出因素排序结果不完全相同,主要是因为绝对关联矩阵计算出的绝对关联序是从绝对量的角度考虑,相对关联矩阵得出的相对关联序是相对于原始点变化速率的角度考虑,而综合关联序是综合绝对量和相对变化速率的角度考虑,实际应用中,只要考虑绝对关联序即可。

1.4.1 灰色绝对关联度

(1)预备知识

(2)始点零化算子

(3)序列长度

(4)灰色绝对关联度

e.g.

(5)等时距序列

(6)1时距化

(7)灰色绝对关联度性质

1.4.2 灰色相对关联度

(1)定义和计算

 (2)性质

1.4.3 灰色综合关联度

(1)概述

 (2)性质

二、优势分析

2.1 灰色关联矩阵

2.2 几类灰色关联矩阵

2.3 系统优势关系

2.4 因素优势关系

2.5 系统准优势关系

2.6 准优特征与准优因素

 

关联度名称

准优特征

准优因素

绝对关联度

相对关联度

综合关联度

三、生成数

        灰色系统理论把一切随机量都看作灰色数即在指定范围内变化的所有白色数的全体。对灰色数的处理不是找概率分布或求统计规律,而是利用数据处理的办法去寻找数据间的规律。通过对数列中的数据进行处理,产生新的数列,以此来挖掘和寻找数的规律性的方法,叫做数的生成。数的生成方式有多种:累加生成累减生成以及加权累加等等。这里主要介绍累加生成。

3.1 累加生成数列

       把数列  x 各时刻数据依次累加的过程叫做累加过程,记作AGO,累加所得的新数列,叫做累加生成数列

特点:

        一般经济数列都是非负数列。累加生成能使任意非负数列、摆动的与非摆动的,转化为非减的、递增的。

四、灰色模型(GM模型)

        灰色系统理论是基于关联空间、光滑离散函数等概念定义灰导数与灰微分方程,进而用离散数据列建立微分方程形式的动态模型,由于这是本征灰色系统的基本模型,而且模型是近似的、非唯一的,故这种模型为灰色模型,记为GMGrey Model),即灰色模型是利用离散随机数经过生成变为随机性被显著削弱而且较有规律的生成数,建立起的微分方程形式的模型,这样便于对其变化过程进行研究和描述。

4.1 GM(1, 1)模型及定义

4.2 GM(1, 1)白化型

    值得注意的是:GM(1,1)的白化型(4)并不是由 GM(1,1)的灰微分方程直接推导出来的,它仅仅是一种借用白化默认

    另一方面,GM(1,1)的白化型是一个真正的微分方程,如果白化型模型精度高,则表明所用数列建立的模型 GM(1,1)与真正的微分方程模型吻合较好,反之亦然。

五、灰色预测

       灰色预测是指利用 GM 模型对系统行为特征的发展变化规律进行估计预测,同时也可以对行为特征的异常情况发生的时刻进行估计计算,以及对在特定时区内发生事件的未来时间分布情况做出研究等等

       这些工作实质上是将随机过程当作灰色过程随机变量当作灰变量,并主要以灰色系统理论中的 GM(1,1)模型来进行处理灰色预测在工业、农业、商业等经济领域,以及环境、社会和军事等领域中都有广泛的应用。特别是依据目前已有的数据对未来的发展趋势做出预测分析。

5.1 灰色预测的步骤

5.1.1 数据的检验与处理

首先,为了保证建模方法的可行性,需要对已知数据列做必要的检验处理。设参考数据为                        计算数列的级比

         如果所有的  级比   都落在可容覆盖

内,则数列 x(0) 可以作为模型 GM(1,1)的数据进行灰色预测。否则,需要对数列 x(0) 做必要的变换处理,使其落入可容覆盖内。

即取适当的常数c,作平移变换

                                    y^(0)  (k) = x^(0)   (k) + ck =1,2,…,n

5.1.2 建立模型

灰色预测方法建立模型 GM(1,1),则可以得到预测值

5.1.3 模型检验

(1)残差检验准则

设:

                

                 

 

(2)关联度检验准则

设:

 

(3)均方差比与小误差检验准则

(4)精度等级参照表

5.2 数列预测

(1)定性分析

(2)引入适当的序列算子

(3)建立预测模型

(4)精度检验

(5)预测

6)灰色决策模型

待续

这篇关于数学建模 —— 灰色系统(4)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1023291

相关文章

Linux系统之主机网络配置方式

《Linux系统之主机网络配置方式》:本文主要介绍Linux系统之主机网络配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、查看主机的网络参数1、查看主机名2、查看IP地址3、查看网关4、查看DNS二、配置网卡1、修改网卡配置文件2、nmcli工具【通用

Linux系统之dns域名解析全过程

《Linux系统之dns域名解析全过程》:本文主要介绍Linux系统之dns域名解析全过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、dns域名解析介绍1、DNS核心概念1.1 区域 zone1.2 记录 record二、DNS服务的配置1、正向解析的配置

Linux系统中配置静态IP地址的详细步骤

《Linux系统中配置静态IP地址的详细步骤》本文详细介绍了在Linux系统中配置静态IP地址的五个步骤,包括打开终端、编辑网络配置文件、配置IP地址、保存并重启网络服务,这对于系统管理员和新手都极具... 目录步骤一:打开终端步骤二:编辑网络配置文件步骤三:配置静态IP地址步骤四:保存并关闭文件步骤五:重

Windows系统下如何查找JDK的安装路径

《Windows系统下如何查找JDK的安装路径》:本文主要介绍Windows系统下如何查找JDK的安装路径,文中介绍了三种方法,分别是通过命令行检查、使用verbose选项查找jre目录、以及查看... 目录一、确认是否安装了JDK二、查找路径三、另外一种方式如果很久之前安装了JDK,或者在别人的电脑上,想

Linux系统之authconfig命令的使用解读

《Linux系统之authconfig命令的使用解读》authconfig是一个用于配置Linux系统身份验证和账户管理设置的命令行工具,主要用于RedHat系列的Linux发行版,它提供了一系列选项... 目录linux authconfig命令的使用基本语法常用选项示例总结Linux authconfi

Nginx配置系统服务&设置环境变量方式

《Nginx配置系统服务&设置环境变量方式》本文介绍了如何将Nginx配置为系统服务并设置环境变量,以便更方便地对Nginx进行操作,通过配置系统服务,可以使用系统命令来启动、停止或重新加载Nginx... 目录1.Nginx操作问题2.配置系统服android务3.设置环境变量总结1.Nginx操作问题

CSS3 最强二维布局系统之Grid 网格布局

《CSS3最强二维布局系统之Grid网格布局》CS3的Grid网格布局是目前最强的二维布局系统,可以同时对列和行进行处理,将网页划分成一个个网格,可以任意组合不同的网格,做出各种各样的布局,本文介... 深入学习 css3 目前最强大的布局系统 Grid 网格布局Grid 网格布局的基本认识Grid 网

在不同系统间迁移Python程序的方法与教程

《在不同系统间迁移Python程序的方法与教程》本文介绍了几种将Windows上编写的Python程序迁移到Linux服务器上的方法,包括使用虚拟环境和依赖冻结、容器化技术(如Docker)、使用An... 目录使用虚拟环境和依赖冻结1. 创建虚拟环境2. 冻结依赖使用容器化技术(如 docker)1. 创

CentOS系统Maven安装教程分享

《CentOS系统Maven安装教程分享》本文介绍了如何在CentOS系统中安装Maven,并提供了一个简单的实际应用案例,安装Maven需要先安装Java和设置环境变量,Maven可以自动管理项目的... 目录准备工作下载并安装Maven常见问题及解决方法实际应用案例总结Maven是一个流行的项目管理工具

C#实现系统信息监控与获取功能

《C#实现系统信息监控与获取功能》在C#开发的众多应用场景中,获取系统信息以及监控用户操作有着广泛的用途,比如在系统性能优化工具中,需要实时读取CPU、GPU资源信息,本文将详细介绍如何使用C#来实现... 目录前言一、C# 监控键盘1. 原理与实现思路2. 代码实现二、读取 CPU、GPU 资源信息1.