Pytorch-Lighting使用教程(MNIST为例)

2024-06-02 07:12

本文主要是介绍Pytorch-Lighting使用教程(MNIST为例),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、pytorch-lighting简介

1.1 pytorch-lighting是什么

pytorch-lighting(简称pl),基于 PyTorch 的框架。它的核心思想是,将学术代码模型定义、前向 / 反向、优化器、验证等)与工程代码for-loop,保存、tensorboard 日志、训练策略等)解耦开来,使得代码更为简洁清晰。

工程代码经常会出现在深度学习代码中,PyTorch Lightning 对这部分逻辑进行了封装,只需要在 Trainer 类中简单设置即可调用,无需重复造轮子。

1.2 pytorch-lighting优势

  • 通过抽象出样板工程代码,可以更容易地识别和理解ML代码;
  • Lightning的统一结构使得在现有项目的基础上进行构建和理解变得非常容易;
  • Lightning 自动化的代码是用经过全面测试、定期维护并遵循ML最佳实践的高质量代码构建的;

pytorch-lighting最大的好处:

(1)是摆脱了硬件依赖,不需要在程序中显式设置.cuda() 等,PyTorch Lightning 会自动将模型、张量的设备放置在合适的设备;移除.train() 等代码,这也会自动切换

(2)支持分布式训练,自动分配资源,能够很好的进行大规模的DL训练

(3)代码量较少,只需要关心关键的逻辑代码,而框架性的东西,pytorch-lighting已经帮你解决(如自动训练,自动debug)


二、基于Pytorch-Lighting框架训练MNIST模型

1、仅仅训练

下载的所有的数据集都用于训练(没有评估和测试过程,不清楚模型的好与坏)。

# 1. 导入所需的模块
import os
import torch
from torch import nn
import torch.nn.functional as F
from torchvision import transforms
from torchvision.datasets import MNIST
from torch.utils.data import DataLoader
import lightning.pytorch as pl# 2. 定义编码器和解码器
# 2.1 定义基础编码器Encoder
class Encoder(nn.Module):def __init__(self):super().__init__()self.l1 = nn.Sequential(nn.Linear(28 * 28, 64), nn.ReLU(), nn.Linear(64, 3))def forward(self, x):return self.l1(x)# 2.2 定义基础解码器Decoder
class Decoder(nn.Module):def __init__(self):super().__init__()self.l1 = nn.Sequential(nn.Linear(3, 64), nn.ReLU(), nn.Linear(64, 28 * 28))def forward(self, x):return self.l1(x)# 3. 定义LightningModule
class LitAutoEncoder(pl.LightningModule):# 3.1 加载基础模型def __init__(self, encoder, decoder):super().__init__()self.encoder = encoderself.decoder = decoder# 3.2 训练过程设置def training_step(self, batch, batch_idx):  # 每一个batch数据运算计算loss# training_step defines the train loop.x, y = batchx = x.view(x.size(0), -1)z = self.encoder(x)x_hat = self.decoder(z)loss = F.mse_loss(x_hat, x)return loss# 3.3 优化器设置def configure_optimizers(self):optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)return optimizer# 4. 定义训练数据
dataset = MNIST(os.getcwd(), download=True, transform=transforms.ToTensor())
train_loader = DataLoader(dataset)# 5. 实例化模型
autoencoder = LitAutoEncoder(Encoder(), Decoder())# 6. 开始训练
trainer = pl.Trainer(max_epochs=10)
trainer.fit(model=autoencoder, train_dataloaders=train_loader)

class LitAutoEncoder(pl.LightningModule):

  • 将模型定义代码写在__init__
  • 定义前向传播逻辑
  • 将优化器代码写在 configure_optimizers 钩子中
  • 训练代码写在 training_step 钩子中,可使用 self.log 随时记录变量的值,会保存在 tensorboard 中
  • 验证代码写在 validation_step 钩子中
  • 移除硬件调用.cuda() 等,PyTorch Lightning 会自动将模型、张量的设备放置在合适的设备;移除.train() 等代码,这也会自动切换
  • 根据需要,重写其他钩子函数,例如 validation_epoch_end,对 validation_step 的结果进行汇总;train_dataloader,定义训练数据的加载逻辑
  • 实例化 Lightning Module 和 Trainer 对象,传入数据集
  • 定义训练参数和回调函数,例如训练设备、数量、保存策略,Early Stop、半精度等

运行结果:

2、添加验证和测试模块

在训练之后,加入了测试和评估功能,能更好的指导模型的性能。

# 1. 导入所需的模块
import os
import torch
from torch import nn
import torch.nn.functional as F
from torchvision import transforms
from torchvision.datasets import MNIST
from torch.utils.data import DataLoader
import lightning.pytorch as plimport torch.utils.data as data
from torchvision import datasets
import torchvision.transforms as transformsfrom torch.utils.data import DataLoader# 2. 定义编码器和解码器
# 2.1 定义基础编码器Encoder
class Encoder(nn.Module):def __init__(self):super().__init__()self.l1 = nn.Sequential(nn.Linear(28 * 28, 64), nn.ReLU(), nn.Linear(64, 3))def forward(self, x):return self.l1(x)# 2.2 定义基础解码器Decoder
class Decoder(nn.Module):def __init__(self):super().__init__()self.l1 = nn.Sequential(nn.Linear(3, 64), nn.ReLU(), nn.Linear(64, 28 * 28))def forward(self, x):return self.l1(x)# 3. 定义LightningModule
class LitAutoEncoder(pl.LightningModule):# 3.1 加载基础模型def __init__(self, encoder, decoder):super().__init__()self.encoder = encoderself.decoder = decoder# 3.2 训练过程设置def training_step(self, batch, batch_idx):  # 每一个batch数据运算计算loss# training_step defines the train loop.x, y = batchx = x.view(x.size(0), -1)z = self.encoder(x)x_hat = self.decoder(z)loss = F.mse_loss(x_hat, x)return loss# 3.3 测试过程设置def test_step(self, batch, batch_idx):# this is the test loopx, y = batchx = x.view(x.size(0), -1)z = self.encoder(x)x_hat = self.decoder(z)test_loss = F.mse_loss(x_hat, x)self.log("test_loss", test_loss)# 3.4 验证过程设置def validation_step(self, batch, batch_idx):# this is the validation loopx, y = batchx = x.view(x.size(0), -1)z = self.encoder(x)x_hat = self.decoder(z)val_loss = F.mse_loss(x_hat, x)self.log("val_loss", val_loss)# 3.5 优化器设置def configure_optimizers(self):optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)return optimizer# 4. 定义训练数据
'''
dataset = MNIST(os.getcwd(), download=True, transform=transforms.ToTensor())
train_loader = DataLoader(dataset)
'''# 4.1 分别下载并加载训练集和测试集
transform = transforms.ToTensor()
train_set = datasets.MNIST(os.getcwd(), download=False, train=True, transform=transform)
test_set = datasets.MNIST(os.getcwd(), download=False, train=False, transform=transform)# 4.2 将训练集中的20%用于验证集
train_set_size = int(len(train_set) * 0.8)
valid_set_size = len(train_set) - train_set_size# 4.3 设置种子
seed = torch.Generator().manual_seed(42)# 4.4 从训练集中随机拿到80%的测试集和20%的验证集
train_set, valid_set = data.random_split(train_set, [train_set_size, valid_set_size], generator=seed)# 4.5 分别加载训练集和测试集
train_loader = DataLoader(train_set)
valid_loader = DataLoader(valid_set)# 5. 实例化模型
autoencoder = LitAutoEncoder(Encoder(), Decoder())# 6. 实例化Trainer
trainer = pl.Trainer(max_epochs=10)# 7. 开始训练和评估
trainer.fit(autoencoder, train_loader, valid_loader)# 8.开始测试
trainer.test(model=autoencoder, dataloaders=DataLoader(test_set))

3、权重 & 超参的保存和加载

当模型正在训练时,性能会随着它继续看到更多数据而发生变化。

1)训练完成后,使用在训练过程中发现的最佳性能相对应的权重;

2)权重可以让训练在训练过程中断的情况下从原来的位置恢复。

保存权重:Lightning 会自动为你在当前工作目录下保存一个权重,其中包含上一次训练的状态。这能确保在训练中断的情况下恢复训练。

3.1 自动在当前目录下保存checkpoint

# simply by using the Trainer you get automatic checkpointing
trainer = Trainer()

3.2 指定checkpoint保存的目录

# saves checkpoints to 'some/path/' at every epoch end
trainer = Trainer(default_root_dir="some/path/")

3.3 加载checkpoint

# trainer.fit(autoencoder, train_loader, valid_loader, ckpt_path="/home/gvlib_ljh/class/Lightning_mnist/lightning_logs/version_25/checkpoints/epoch=9-step=160000.ckpt")

4、可视化

在模型开发中,我们跟踪感兴趣的值,例如validation_loss,以可视化模型的学习过程。模型开发就像驾驶一辆没有窗户的汽车,图表和日志提供了了解汽车行驶方向的窗口。借助 Lightning,可以可视化任何您能想到的东西:数字、文本、图像、音频。

要跟踪指标,只需使用 LightningModule 内可用的 self.log 方法。

class LitModel(pl.LightningModule):def training_step(self, batch, batch_idx):value = ...self.log("some_value", value)

同时记录多个指标:

values = {"loss": loss, "acc": acc, "metric_n": metric_n}  # add more items if needed
self.log_dict(values)

4.1 命令行查看

要在命令行进度栏中查看指标,请将 prog_bar 参数设置为 True。

self.log(..., prog_bar=True)

4.2 浏览器查看

默认情况下,Lightning 使用 Tensorboard(如果可用)和一个简单的 CSV 记录器

在命令行中输入(注意:一定是lightning_logs所在的目录):

tensorboard --logdir=lightning_logs/

Tensorboard界面:

Tensorboard输出分析:

完整的代码:

# 1. 导入所需的模块
import os
import torch
from torch import nn
import torch.nn.functional as F
from torchvision import transforms
from torchvision.datasets import MNIST
from torch.utils.data import DataLoader
import lightning.pytorch as plimport torch.utils.data as data
from torchvision import datasets
import torchvision.transforms as transformsfrom torch.utils.data import DataLoaderfrom pytorch_lightning.loggers import TensorBoardLogger# 设置浮点矩阵乘法精度为 'medium'
torch.set_float32_matmul_precision('medium')# 2. 定义编码器和解码器
# 2.1 定义基础编码器Encoder
class Encoder(nn.Module):def __init__(self):super().__init__()self.l1 = nn.Sequential(nn.Linear(28 * 28, 64), nn.ReLU(), nn.Linear(64, 3))def forward(self, x):return self.l1(x)# 2.2 定义基础解码器Decoder
class Decoder(nn.Module):def __init__(self):super().__init__()self.l1 = nn.Sequential(nn.Linear(3, 64), nn.ReLU(), nn.Linear(64, 28 * 28))def forward(self, x):return self.l1(x)# 3. 定义LightningModule
class LitAutoEncoder(pl.LightningModule):# 3.1 加载基础模型def __init__(self, encoder, decoder):super().__init__()self.encoder = encoderself.decoder = decoder# 3.2 训练过程设置def training_step(self, batch, batch_idx):  # 每一个batch数据运算计算loss# training_step defines the train loop.x, y = batchx = x.view(x.size(0), -1)z = self.encoder(x)x_hat = self.decoder(z)loss = F.mse_loss(x_hat, x)batch_idx_value = batch_idx + 1print(" ")values = {"loss": loss, "batch_idx_value": batch_idx_value}  # add more items if neededself.log_dict(values)# 在命令行界面显示log'''sync_dist=True:分布式计算,数据同步标志prog_bar=True:在控制台上显示'''self.log("train_loss", loss, sync_dist=True, prog_bar=True)return loss# 3.3 测试过程设置def test_step(self, batch, batch_idx):x, y = batchx = x.view(x.size(0), -1)z = self.encoder(x)x_hat = self.decoder(z)test_loss = F.mse_loss(x_hat, x)self.log("test_loss", test_loss, sync_dist=True, prog_bar=True)# 3.4 验证过程设置def validation_step(self, batch, batch_idx):# this is the validation loopx, y = batchx = x.view(x.size(0), -1)z = self.encoder(x)x_hat = self.decoder(z)val_loss = F.mse_loss(x_hat, x)self.log("val_loss", val_loss, sync_dist=True, prog_bar=True)# 3.5 优化器设置def configure_optimizers(self):optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)return optimizer# 4. 定义训练数据
'''
dataset = MNIST(os.getcwd(), download=True, transform=transforms.ToTensor())
train_loader = DataLoader(dataset)
'''# 4.1 分别下载并加载训练集和测试集
transform = transforms.ToTensor()
train_set = datasets.MNIST(os.getcwd(), download=False, train=True, transform=transform)
test_set = datasets.MNIST(os.getcwd(), download=False, train=False, transform=transform)# 4.2 将训练集中的20%用于验证集
train_set_size = int(len(train_set) * 0.8)
valid_set_size = len(train_set) - train_set_size# 4.3 设置种子
seed = torch.Generator().manual_seed(42)# 4.4 从训练集中随机拿到80%的测试集和20%的验证集
train_set, valid_set = data.random_split(train_set, [train_set_size, valid_set_size], generator=seed)# 4.5 分别加载训练集和测试集
train_loader = DataLoader(train_set, batch_size=256, num_workers=5)
valid_loader = DataLoader(valid_set, batch_size=128, num_workers=5)# 5. 实例化模型
autoencoder = LitAutoEncoder(Encoder(), Decoder())# 6. 实例化Trainer
trainer = pl.Trainer(max_epochs=1000)# 7. 开始训练和评估
trainer.fit(autoencoder, train_loader, valid_loader)
# 7. 从checkpoint恢复状态
# trainer.fit(autoencoder, train_loader, valid_loader, ckpt_path="/home/gvlib_ljh/class/Lightning_mnist/lightning_logs/version_25/checkpoints/epoch=9-step=160000.ckpt")# 8.开始测试
trainer.test(model=autoencoder, dataloaders=DataLoader(test_set))

参考:

https://zhuanlan.zhihu.com/p/659631467

这篇关于Pytorch-Lighting使用教程(MNIST为例)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1023290

相关文章

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

windos server2022的配置故障转移服务的图文教程

《windosserver2022的配置故障转移服务的图文教程》本文主要介绍了windosserver2022的配置故障转移服务的图文教程,以确保服务和应用程序的连续性和可用性,文中通过图文介绍的非... 目录准备环境:步骤故障转移群集是 Windows Server 2022 中提供的一种功能,用于在多个

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

使用SQL语言查询多个Excel表格的操作方法

《使用SQL语言查询多个Excel表格的操作方法》本文介绍了如何使用SQL语言查询多个Excel表格,通过将所有Excel表格放入一个.xlsx文件中,并使用pandas和pandasql库进行读取和... 目录如何用SQL语言查询多个Excel表格如何使用sql查询excel内容1. 简介2. 实现思路3

java脚本使用不同版本jdk的说明介绍

《java脚本使用不同版本jdk的说明介绍》本文介绍了在Java中执行JavaScript脚本的几种方式,包括使用ScriptEngine、Nashorn和GraalVM,ScriptEngine适用... 目录Java脚本使用不同版本jdk的说明1.使用ScriptEngine执行javascript2.

c# checked和unchecked关键字的使用

《c#checked和unchecked关键字的使用》C#中的checked关键字用于启用整数运算的溢出检查,可以捕获并抛出System.OverflowException异常,而unchecked... 目录在 C# 中,checked 关键字用于启用整数运算的溢出检查。默认情况下,C# 的整数运算不会自