用贪心算法计算十进制数转二进制数(小数部分)

2024-06-02 05:44

本文主要是介绍用贪心算法计算十进制数转二进制数(小数部分),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在上一篇博文用贪心算法计算十进制数转二进制数(整数部分)-CSDN博客中,小编介绍了用贪心算法进行十进制整数转化为二进制数的操作步骤,那么有朋友问我,那十进制小数转二进制,可以用贪心算法来计算吗?我研究了一下,发现也是可以用的,下边介绍一下操作步骤。

目录

一、乘2正向取整法

二、十进制小数转化为二进制小数的数学原理

三、贪心算法

1、贪心算法简介

2、操作步骤

3、结论


一、乘2正向取整法

在介绍贪心算法之前,还是先介绍一下常用的计算方法,就是“乘2取整”法。

这种方法就是把十进制的小数部分乘2,并记录得到的积的整数部分,把积的整数部分减掉,再把积的小数部分进行乘2,并记录得到的积的整数部分,依次乘2取整,直到乘2后得到的积为1,也就是整数部分为1,小数部分为0时,转化完成。转化完成后,从上往下(正向)依次把整数部分排列起来,就是转化后的二进制小数。

图1 乘2取整法

注意,并不是所有的十进制小数都能精确地转化为二进制小数。如果出现乘2后的积一直不为1的情况时,此十进制小数就不能精确转化为二进制小数,只能无限接近。

例如,十进制小数0.15就无法精确地转换为二进制,转化的结果为0.001001100110011……循环不尽,无法得到精确转化值。

二、十进制小数转化为二进制小数的数学原理

通过观察图1,可以看出:

0.6875=1\times 2^{-1}+0\times 2^{-2}+1\times 2^{-3}+1\times 2^{-4}                                       (1)

一般的表达式为:

   a=\sum_{i=1}^{i=n}\left ( c_{i}\ast 2^{-i} \right ),c_{i}\in \left \{ 0,1 \right \}                                                              (2)

十进制小数转化为二进制小数的过程就是把系数c_{i}i=1i=n(从最高位到最低位)的排列。   

在(1)式中,c_{1}=1,c_{2}=0,c_{3}=1,c_{4}=1,所以\left ( 0.6875 \right )_{10}=\left ( 0.1011 \right )_{2}

如果把(1)式中的系数 c_{_i}=0 的项去掉,那么有

0.6875=1\times 2^{-1}+1\times 2^{-3}+1\times 2^{-4}                                           (3)

也就是把十进制小数转换为二进制小数的过程,实际上就是把十进制小数转换为若干个以2为底的幂运算之和,那么一般表达式为:

a=\sum_{i=0}^{i=m}2^{-n_{i}}                                                                       (4)

在(3)式中,n_{0}=1,n_{1}=3,n_{2}=4。也就是在十进制小数0.6825转换为二进制小数后,数位序号为1,3,4的项系数为1,其他项系数都为0(数位序号从左向右依次增1,最低位序号为1),如表1所示,表格中橙色项系数为1,白色项系数为0。

表1 十进制小数0.6875的二进制转换结果
位序号1234
位权重1/21/41/81/16
项系数1011
二进制数1011

三、贪心算法

那么如何快速计算出(4)式的n_{i}呢?与十进制整数转化二进制数类似,也可以用贪心算法进行计算。

1、贪心算法简介

贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的是在某种意义上的局部最优解。

2、操作步骤

假设十进制数为a,根据公式(4),用贪心算法思维进行十进制小数转二进制小数计算的步骤为:

(1)先找出a中最大的那一项2^{-n_{i}},并记录n_{i}

(2)把最大项的值从​​​​​​​a中减掉:a=a-2^{-n_{i}}

(3)跳转到步骤(1)循环计算,直到​​​​​​​a=0a\leqslant给定极小值,计算结束。

为了人工计算更直观,我们通常把2^{-n_{i}}写为小数形式0.5,0.25,0.125,0.0625,0.03125

因此(1)式右边的指数形式转化为小数形式

0.6825=1\times 0.5+0\times 0.25+1\times0.125+1\times 0.0625                              (5)

同样,可以把(3)式改写为:

0.6825=1\times 0.5+1\times0.125+1\times 0.0625                                        (6)

下边以十进制小数a=0.6875转化为二进制小数为例,介绍贪心算法的计算步骤:

(1)找出0.6875中最大的项为0.5,也就是2^{-1},记录n_{0}=1

(2)a=0.6875-0.5=0.1875

(3)找出0.1875中最大的项为0.125,也就是2^{-3},记录n_{1}=3

(4)a=0.1875-0.125=0.0625

(5)找出0.0625中最大的项为0.0625,也就是2^{-4},记录n_{1}=4

(6)a=0.0625-0.0625=0,计算结束;

计算的结果为:0.6875=0.5+0.125+0.0625=2^{-1}+2^{-3}+2^{-4}

二进制小数位序号为1,3,4的项为1,其他位序号的项为0,计算结果为\left ( 0.6875 \right )_{10}=\left ( 0.1011 \right )_{2}

3、结论

对比乘2取整法和贪心法,可以发现,对于可以转化为精确二进制小数的情况来说,贪心算法计算量少,准确率较高,不容易算错,也更直观,更好理解和记忆,但是需要我们事先记住一些常用的2^{-n}的值,这样才有助于我们更快找出最大项。表2为1\leqslant n\leqslant 52^{-n}的值。

表2 常用2为底幂的值

2^{-n}2^{-1}2^{-2}2^{-3}2^{-4}2^{-5}
0.50.250.1250.06250.03125

(本文结束)

这篇关于用贪心算法计算十进制数转二进制数(小数部分)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1023144

相关文章

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

如何将二进制文件流转化为MockMultipartFile文件

《如何将二进制文件流转化为MockMultipartFile文件》文章主要介绍了如何使用Spring框架中的MockMultipartFile类来模拟文件上传,并处理上传逻辑,包括获取二进制文件流、创... 目录一、名词解释及业务解释1.具体业务流程2.转换对象解释1. MockMultipartFile2

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖