tcp链接中的三次挥手是什么原因

2024-06-02 04:04
文章标签 tcp 挥手 三次 链接 原因

本文主要是介绍tcp链接中的三次挥手是什么原因,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、tcp链接中的正常四次挥手过程?

在这里插入图片描述

刚开始双方都处于 ESTABLISHED 状态,假如是客户端先发起关闭请求。四次挥手的过程如下:

1、客户端打算关闭连接,此时会发送一个 TCP 首部 FIN 标志位被置为 1 的报文,也即 FIN 报文,之后客户端进入 FIN_WAIT_1 状态。2、接着,当服务端在 read 数据的时候,最后⾃然就会读到 EOF,接着 read() 就会返回 0,这时服务端应⽤程序如果有数据要发送的话,就发完数据后才调⽤关闭连接的函数,如果服务端应⽤程序没有数据要发送的话,可以直接调⽤关闭连接的函数,这时服务端就会发⼀个 FIN 包,这个 FIN 报⽂代表服务端不会再发送数据了,之后处于 LAST_ACK 状态;。
3、客户端收到服务端的 ACK 应答报文后,之后进入 FIN_WAIT_2 状态。
4、等待服务端处理完数据后,也向客户端发送 FIN 报文,之后服务端进入 LAST_ACK 状态。
5、客户端收到服务端的 FIN 报文后,回一个 ACK 应答报文,之后进入 TIME_WAIT 状态
6、服务端收到了 ACK 应答报文后,就进入了 CLOSE 状态,至此服务端已经完成连接的关闭。
7、客户端在经过 2MSL 一段时间后,自动进入 CLOSE 状态,至此客户端也完成连接的关闭。
你可以看到,每个方向都需要一个 FIN 和一个 ACK,因此通常被称为四次挥手。

这里一点需要注意是:主动关闭连接的,才有 TIME_WAIT 状态。

二、为什么挥手需要四次

服务器收到客户端的 FIN 报⽂时,内核会⻢上回⼀个 ACK 应答报⽂,但是服务端应⽤程序可能还有数据要发送,所以并不能⻢上发送 FIN 报⽂,⽽是将发送 FIN 报⽂的控制权交给服务端应⽤程序

1、关闭连接时,客户端向服务端发送 FIN 时,仅仅表示客户端不再发送数据了但是还能接收数据。
2、服务端收到客户端的 FIN 报文时,先回一个 ACK 应答报文,而服务端可能还有数据需要处理和发送,等服务端不再发送数据时,才发送 FIN 报文给客户端来表示同意现在关闭连接。

从上⾯过程可知,是否要发送第三次挥⼿的控制权不在内核,⽽是在被动关闭⽅(上图的服务端)的应⽤程序,因为应⽤程序可能还有数据要发送,由应⽤程序决定什么时候调⽤关闭连接的函数,当调⽤了关闭连接的函数,内核就会发送 FIN 报⽂了,所以服务端的 ACK 和 FIN ⼀般都会分开发送。

FIN 报⽂⼀定得调⽤关闭连接的函数,才会发送吗?不一定

如果进程退出了,不管是不是正常退出,还是异常退出(如进程崩溃),内核都会发送 FIN 报⽂,与对⽅完成四次挥⼿。

三、粗暴关闭 vs 优雅关闭

前⾯介绍 TCP 四次挥⼿的时候,并没有详细介绍关闭连接的函数,其实关闭的连接的函数有两种函数:

  • close 函数,同时 socket 关闭发送⽅向和读取⽅向,也就是 socket 不再有发送和接收数据的能⼒。如果有多进程/多线程共享同⼀个 socket,如果有⼀个进程调⽤了 close 关闭只是让 socket 引⽤计数-1,并不会导致 socket 不可⽤,同时也不会发出 FIN 报⽂,其他进程还是可以正常读写该 socket, 直到引⽤计数变为 0,才会发出 FIN 报⽂。
  • shutdown 函数,可以指定 socket 只关闭发送⽅向⽽不关闭读取⽅向,也就是 socket 不再有发送数据的能⼒,但是还是具有接收数据的能⼒。如果有多进程/多线程共享同⼀个 socket,shutdown 则不 管引⽤计数,直接使得该socket 不可⽤,然后发出 FIN 报⽂,如果有别的进程企图使⽤该 socket, 将会受到影响。

如果客户端是⽤ close 函数来关闭连接,那么在 TCP 四次挥⼿过程中,如果收到了服务端发送的数据,由于客户端已经不再具有发送和接收数据的能⼒,所以客户端的内核会回 RST 报⽂给服务端,然后内核会释放连接,这时就不会经历完成的 TCP 四次挥⼿,所以我们常说,调⽤ close 是粗暴的关闭。
在这里插入图片描述
当服务端收到 RST 后,内核就会释放连接,当服务端应⽤程序再次发起读操作或者写操作时,就能感知到连接已经被释放了:

  • 如果是读操作,则会返回 RST 的报错,也就是我们常⻅的Connection reset by peer。
  • 如果是写操作,那么程序会产⽣ SIGPIPE 信号,应⽤层代码可以捕获并处理信号,如果不处理,则默 认情况下进程会终⽌,异常退出。

相对的,shutdown 函数因为可以指定只关闭发送⽅向⽽不关闭读取⽅向,所以即使在 TCP 四次挥⼿过程中,如果收到了服务端发送的数据,客户端也是可以正常读取到该数据的,然后就会经历完整的 TCP 四次挥⼿,所以我们常说,调⽤ shutdown 是优雅的关闭。

在这里插入图片描述
但是注意,shutdown 函数也可以指定「只关闭读取⽅向,⽽不关闭发送⽅向」,但是这时候内核是不会发送 FIN 报⽂的,因为发送 FIN 报⽂是意味着我⽅将不再发送任何数据,⽽ shutdown 如果指定「不关闭发送⽅向」,就意味着 socket 还有发送数据的能⼒,所以内核就不会发送 FIN。

四、什么情况会出现三次挥⼿?

当被动关闭⽅(上图的服务端)在 TCP 挥⼿过程中,「没有数据要发送」并且「开启了 TCP 延迟确认机制」,那么第⼆和第三次挥⼿就会合并传输,这样就出现了三次挥⼿

在这里插入图片描述
然后因为 TCP 延迟确认机制是默认开启的,所以导致我们抓包时,看⻅三次挥⼿的次数⽐四次挥⼿还多。

什么是 TCP 延迟确认机制?

当发送没有携带数据的 ACK,它的⽹络效率也是很低的,因为它也有 40 个字节的 IP 头 和 TCP 头,但却没有携带数据报⽂。为了解决 ACK 传输效率低问题,所以就衍⽣出了 TCP 延迟确认。

TCP 延迟确认的策略:

  • 当有响应数据要发送时,ACK 会随着响应数据⼀起⽴刻发送给对⽅
  • 当没有响应数据要发送时,ACK 将会延迟⼀段时间,以等待是否有响应数据可以⼀起发送
  • 如果在延迟等待发送 ACK 期间,对⽅的第⼆个数据报⽂⼜到达了,这时就会⽴刻发送 ACK

在这里插入图片描述

这篇关于tcp链接中的三次挥手是什么原因的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1022976

相关文章

流媒体平台/视频监控/安防视频汇聚EasyCVR播放暂停后视频画面黑屏是什么原因?

视频智能分析/视频监控/安防监控综合管理系统EasyCVR视频汇聚融合平台,是TSINGSEE青犀视频垂直深耕音视频流媒体技术、AI智能技术领域的杰出成果。该平台以其强大的视频处理、汇聚与融合能力,在构建全栈视频监控系统中展现出了独特的优势。视频监控管理系统EasyCVR平台内置了强大的视频解码、转码、压缩等技术,能够处理多种视频流格式,并以多种格式(RTMP、RTSP、HTTP-FLV、WebS

安卓链接正常显示,ios#符被转义%23导致链接访问404

原因分析: url中含有特殊字符 中文未编码 都有可能导致URL转换失败,所以需要对url编码处理  如下: guard let allowUrl = webUrl.addingPercentEncoding(withAllowedCharacters: .urlQueryAllowed) else {return} 后面发现当url中有#号时,会被误伤转义为%23,导致链接无法访问

【测试】输入正确用户名和密码,点击登录没有响应的可能性原因

目录 一、前端问题 1. 界面交互问题 2. 输入数据校验问题 二、网络问题 1. 网络连接中断 2. 代理设置问题 三、后端问题 1. 服务器故障 2. 数据库问题 3. 权限问题: 四、其他问题 1. 缓存问题 2. 第三方服务问题 3. 配置问题 一、前端问题 1. 界面交互问题 登录按钮的点击事件未正确绑定,导致点击后无法触发登录操作。 页面可能存在

【Go】go连接clickhouse使用TCP协议

离开你是傻是对是错 是看破是软弱 这结果是爱是恨或者是什么 如果是种解脱 怎么会还有眷恋在我心窝 那么爱你为什么                      🎵 黄品源/莫文蔚《那么爱你为什么》 package mainimport ("context""fmt""log""time""github.com/ClickHouse/clickhouse-go/v2")func main(

2024.9.8 TCP/IP协议学习笔记

1.所谓的层就是数据交换的深度,电脑点对点就是单层,物理层,加上集线器还是物理层,加上交换机就变成链路层了,有地址表,路由器就到了第三层网络层,每个端口都有一个mac地址 2.A 给 C 发数据包,怎么知道是否要通过路由器转发呢?答案:子网 3.将源 IP 与目的 IP 分别同这个子网掩码进行与运算****,相等则是在一个子网,不相等就是在不同子网 4.A 如何知道,哪个设备是路由器?答案:在 A

每日一练7:简写单词(含链接)

1.链接 简写单词_牛客题霸_牛客网 2.题目 3.代码1(错误经验) #include <iostream>#include <string>using namespace std;int main() {string s;string ret;int count = 0;while(cin >> s)for(auto a : s){if(count == 0){if( a <=

图解TCP三次握手|深度解析|为什么是三次

写在前面 这篇文章我们来讲解析 TCP三次握手。 TCP 报文段 传输控制块TCB:存储了每一个连接中的一些重要信息。比如TCP连接表,指向发送和接收缓冲的指针,指向重传队列的指针,当前的发送和接收序列等等。 我们再来看一下TCP报文段的组成结构 TCP 三次握手 过程 假设有一台客户端,B有一台服务器。最初两端的TCP进程都是处于CLOSED关闭状态,客户端A打开链接,服务器端

短链接算法原理

平时我们在上网的时候,印象最深刻的有一次是短链接的服务。例如:平时在微信上看一个网页的时候,如果我们选择在浏览器打开的时候,会看到很长的URL,我们分享的时候,会看到一个很短URL,这就是本次所说的短链接的应用之一。 长链接示例:https://mp.weixin.qq.com/s?__biz=MzAxNzMwOTQ0NA==&mid=2653355437&idx=1&sn=5901826ea63

DAY16:什么是慢查询,导致的原因,优化方法 | undo log、redo log、binlog的用处 | MySQL有哪些锁

目录 什么是慢查询,导致的原因,优化方法 undo log、redo log、binlog的用处  MySQL有哪些锁   什么是慢查询,导致的原因,优化方法 数据库查询的执行时间超过指定的超时时间时,就被称为慢查询。 导致的原因: 查询语句比较复杂:查询涉及多个表,包含复杂的连接和子查询,可能导致执行时间较长。查询数据量大:当查询的数据量庞大时,即使查询本身并不复杂,也可能导致

flume系列之:记录一次flume agent进程被异常oom kill -9的原因定位

flume系列之:记录一次flume agent进程被异常oom kill -9的原因定位 一、背景二、定位问题三、解决方法 一、背景 flume系列之:定位flume没有关闭某个时间点生成的tmp文件的原因,并制定解决方案在博主上面这篇文章的基础上,在机器内存、cpu资源、flume agent资源都足够的情况下,flume agent又出现了tmp文件无法关闭的情况 二、