UVA 1045 - The Great Wall Game(二分图完美匹配)

2024-06-01 19:38

本文主要是介绍UVA 1045 - The Great Wall Game(二分图完美匹配),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

UVA 1045 - The Great Wall Game

题目链接

题意:给定一个n*n的棋盘,有n个棋子在上面,现在要移动棋子,每一步代价是1,现在要把棋子移动到一行,一列,或者在主副对角线上,问最小代价

思路:二分图完美匹配,枚举每种情况,建边,边权为曼哈顿距离,然后km算法做完美匹配算出值即可,由于要求最小值所以边权传负数,这样做出来的值的负就是答案

代码:

#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
using namespace std;const int MAXNODE = 105;typedef int Type;
const Type INF = 0x3f3f3f3f;struct KM {int n;Type g[MAXNODE][MAXNODE];Type Lx[MAXNODE], Ly[MAXNODE], slack[MAXNODE];int left[MAXNODE];bool S[MAXNODE], T[MAXNODE];void init(int n) {this->n = n;}void add_Edge(int u, int v, Type val) {g[u][v] = val;}bool dfs(int i) {S[i] = true;for (int j = 0; j < n; j++) {if (T[j]) continue;Type tmp = Lx[i] + Ly[j] - g[i][j];if (!tmp) {T[j] = true;if (left[j] == -1 || dfs(left[j])) {left[j] = i;return true;}} else slack[j] = min(slack[j], tmp);}return false;}void update() {Type a = INF;for (int i = 0; i < n; i++)if (!T[i]) a = min(a, slack[i]);for (int i = 0; i < n; i++) {if (S[i]) Lx[i] -= a;if (T[i]) Ly[i] += a;}}Type km() {for (int i = 0; i < n; i++) {left[i] = -1;Lx[i] = -INF; Ly[i] = 0;for (int j = 0; j < n; j++)Lx[i] = max(Lx[i], g[i][j]);}for (int i = 0; i < n; i++) {for (int j = 0; j < n; j++) slack[j] = INF;while (1) {for (int j = 0; j < n; j++) S[j] = T[j] = false;if (dfs(i)) break;else update();}}Type ans = 0;for (int i = 0; i < n; i++)ans += g[left[i]][i];return ans;}
} gao;const int N = 20;int n, x[N], y[N];int dis(int x1, int y1, int x2, int y2) {return abs(x1 - x2) + abs(y1 - y2);
}int main() {int cas = 0;while (~scanf("%d", &n) && n) {gao.init(n);for (int i = 0; i < n; i++) {scanf("%d%d", &x[i], &y[i]);x[i]--; y[i]--;}int ans = -1000;for (int i = 0; i < n; i++) {for (int j = 0; j < n; j++) {for (int k = 0; k < n; k++) {gao.add_Edge(j, k, -dis(x[j], y[j], i, k));}}ans = max(ans, gao.km());}for (int i = 0; i < n; i++) {for (int j = 0; j < n; j++) {for (int k = 0; k < n; k++) {gao.add_Edge(j, k, -dis(x[j], y[j], k, i));}}ans = max(ans, gao.km());}for (int i = 0; i < n; i++)for (int j = 0; j < n; j++)gao.add_Edge(i, j, -dis(x[i], y[i], j, j));ans = max(ans, gao.km());for (int i = 0; i < n; i++)for (int j = 0; j < n; j++)gao.add_Edge(i, j, -dis(x[i], y[i], n - j - 1, j));ans = max(ans, gao.km());printf("Board %d: %d moves required.\n\n", ++cas, -ans);}return 0;
}


这篇关于UVA 1045 - The Great Wall Game(二分图完美匹配)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1021935

相关文章

hdu2241(二分+合并数组)

题意:判断是否存在a+b+c = x,a,b,c分别属于集合A,B,C 如果用暴力会超时,所以这里用到了数组合并,将b,c数组合并成d,d数组存的是b,c数组元素的和,然后对d数组进行二分就可以了 代码如下(附注释): #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<que

hdu2289(简单二分)

虽说是简单二分,但是我还是wa死了  题意:已知圆台的体积,求高度 首先要知道圆台体积怎么求:设上下底的半径分别为r1,r2,高为h,V = PI*(r1*r1+r1*r2+r2*r2)*h/3 然后以h进行二分 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#includ

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

uva 10055 uva 10071 uva 10300(水题两三道)

情歌两三首,水题两三道。 好久没敲代码了为暑假大作战热热身。 uva 10055 Hashmat the Brave Warrior 求俩数相减。 两个debug的地方,一个是longlong,一个是输入顺序。 代码: #include<stdio.h>int main(){long long a, b;//debugwhile(scanf("%lld%lld", &

poj 3259 uva 558 Wormholes(bellman最短路负权回路判断)

poj 3259: 题意:John的农场里n块地,m条路连接两块地,w个虫洞,虫洞是一条单向路,不但会把你传送到目的地,而且时间会倒退Ts。 任务是求你会不会在从某块地出发后又回来,看到了离开之前的自己。 判断树中是否存在负权回路就ok了。 bellman代码: #include<stdio.h>const int MaxN = 501;//农场数const int

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D

uva 10387 Billiard(简单几何)

题意是一个球从矩形的中点出发,告诉你小球与矩形两条边的碰撞次数与小球回到原点的时间,求小球出发时的角度和小球的速度。 简单的几何问题,小球每与竖边碰撞一次,向右扩展一个相同的矩形;每与横边碰撞一次,向上扩展一个相同的矩形。 可以发现,扩展矩形的路径和在当前矩形中的每一段路径相同,当小球回到出发点时,一条直线的路径刚好经过最后一个扩展矩形的中心点。 最后扩展的路径和横边竖边恰好组成一个直

uva 10061 How many zero's and how many digits ?(不同进制阶乘末尾几个0)+poj 1401

题意是求在base进制下的 n!的结果有几位数,末尾有几个0。 想起刚开始的时候做的一道10进制下的n阶乘末尾有几个零,以及之前有做过的一道n阶乘的位数。 当时都是在10进制下的。 10进制下的做法是: 1. n阶位数:直接 lg(n!)就是得数的位数。 2. n阶末尾0的个数:由于2 * 5 将会在得数中以0的形式存在,所以计算2或者计算5,由于因子中出现5必然出现2,所以直接一

uva 568 Just the Facts(n!打表递推)

题意是求n!的末尾第一个不为0的数字。 不用大数,特别的处理。 代码: #include <stdio.h>const int maxn = 10000 + 1;int f[maxn];int main(){#ifdef LOCALfreopen("in.txt", "r", stdin);#endif // LOCALf[0] = 1;for (int i = 1; i <=

uva 575 Skew Binary(位运算)

求第一个以(2^(k+1)-1)为进制的数。 数据不大,可以直接搞。 代码: #include <stdio.h>#include <string.h>const int maxn = 100 + 5;int main(){char num[maxn];while (scanf("%s", num) == 1){if (num[0] == '0')break;int len =