机器学习中经常使用的特征选择方式+python实现代码

2024-06-01 16:48

本文主要是介绍机器学习中经常使用的特征选择方式+python实现代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

当数据与处理完成后,我们需要选择有意义的特征输入算法和模型进行训练,通常来说,从两个方面来选择特征: 

1、特征是否发散,如果某一个特征的方差为0,即这个属性不能被称之为特征,因为所有的样本在这个特征上并没有什么区别,这种特种需要被剔除;但是如果相反,所有样本在在这个特征上都不一样,比如公民的身份证号码,不能反映出样本的共性的特征的话,特征也必须被剔除。

2、特征与目标之间的相关性,如果特征与目标相关性很高,那么特征应该被优先选择。

2.1、相关性分析 一般都是使用一些距离度量公式来判别特征间的相似度的,用的比较多的主要是皮尔逊相关系数,使用相关性系数来表明特征和标签之间的相关性,如果相关性在0附近,则表示该特征与预测结果无关,但是有些特征表面上看上去与标签值可能无关,但是其组合值有可能和预测值有极大的相关性,所以这个一般只能作为一个参考。

2.2、过滤式选择 过滤式选择一般是借助于特征自身的一些统计值来过滤特征的,比如标准差,方差,设置一个对应的阈值,小于这个阈值的特征就会被过滤掉;最常使用的评价方法有方差选择法 、相关系数法 、卡方检验 、互信息法。

# 过滤式选择,使用的是泰坦尼克号的数据集
test_data = new_data.copy()
from sklearn.feature_selection import VarianceThreshold
train_data = test_data[0].drop(['Survived'],axis = 1).values
test_data = test_data[1].values
#设置属性方差阈值为0.1
selector = VarianceThreshold(0.1)
train_data_1 = selector.fit_transform(train_data)
test_data_1 = test_data.T[selector.get_support()]
test_data_1 = test_data_1.T
test_data_1.shape

2.3、包裹式选择 包裹式选择是需要借助于外部的学习器,一般这种学习器必须有coef_或者feature_importance_这些属性,像是线性模型,树模型都可以学习到特征的权重,或者是特征重要度,基于原始的完整的训练集进行训练,当学习完以后,去除那个权重最小的或者特征重要度最小值对应的特征,重新组织新的训练集,进行特征筛选,知道满足要求为止;

# 包裹式选择,这里使用线性支持向量机来做特征选择
from sklearn.feature_selection import RFE
from sklearn.svm import LinearSVC
x_train = train_data
y_train = new_data[0].Survived.values
estimator = LinearSVC()
selector = RFE(estimator = estimator,n_features_to_select = 18)
train_data_2 = selector.fit_transform(x_train,y_train)
test_data_2 = test_data.T[selector.support_]
test_data_2 = test_data_2.T
test_data_2.shape

2.4、嵌入式选择 和包裹式选择类似,也是需要借助于外部的学习器,但是和包裹式选择不同的是学习器在学习的过程中会不断的进行特征选择,直到满足要求为止。 如果特征的维度过高,一定程度上可以使用降维,比如主成分分析法。

# 嵌入式选择 这里使用随机森林模型
from sklearn.feature_selection import SelectFromModel
from sklearn.ensemble import RandomForestClassifier
estimator = RandomForestClassifier()
selector = SelectFromModel(estimator = estimator,threshold = 'median')
train_data_3 = selector.fit_transform(x_train,y_train)
test_data_3 = test_data.T[selector.get_support()]
test_data_3 = test_data_3.T
test_data_3.shape

这篇关于机器学习中经常使用的特征选择方式+python实现代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1021565

相关文章

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

java实现docker镜像上传到harbor仓库的方式

《java实现docker镜像上传到harbor仓库的方式》:本文主要介绍java实现docker镜像上传到harbor仓库的方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 前 言2. 编写工具类2.1 引入依赖包2.2 使用当前服务器的docker环境推送镜像2.2

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Java easyExcel实现导入多sheet的Excel

《JavaeasyExcel实现导入多sheet的Excel》这篇文章主要为大家详细介绍了如何使用JavaeasyExcel实现导入多sheet的Excel,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录1.官网2.Excel样式3.代码1.官网easyExcel官网2.Excel样式3.代码

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

python常用的正则表达式及作用

《python常用的正则表达式及作用》正则表达式是处理字符串的强大工具,Python通过re模块提供正则表达式支持,本文给大家介绍python常用的正则表达式及作用详解,感兴趣的朋友跟随小编一起看看吧... 目录python常用正则表达式及作用基本匹配模式常用正则表达式示例常用量词边界匹配分组和捕获常用re

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁