机器学习中经常使用的特征选择方式+python实现代码

2024-06-01 16:48

本文主要是介绍机器学习中经常使用的特征选择方式+python实现代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

当数据与处理完成后,我们需要选择有意义的特征输入算法和模型进行训练,通常来说,从两个方面来选择特征: 

1、特征是否发散,如果某一个特征的方差为0,即这个属性不能被称之为特征,因为所有的样本在这个特征上并没有什么区别,这种特种需要被剔除;但是如果相反,所有样本在在这个特征上都不一样,比如公民的身份证号码,不能反映出样本的共性的特征的话,特征也必须被剔除。

2、特征与目标之间的相关性,如果特征与目标相关性很高,那么特征应该被优先选择。

2.1、相关性分析 一般都是使用一些距离度量公式来判别特征间的相似度的,用的比较多的主要是皮尔逊相关系数,使用相关性系数来表明特征和标签之间的相关性,如果相关性在0附近,则表示该特征与预测结果无关,但是有些特征表面上看上去与标签值可能无关,但是其组合值有可能和预测值有极大的相关性,所以这个一般只能作为一个参考。

2.2、过滤式选择 过滤式选择一般是借助于特征自身的一些统计值来过滤特征的,比如标准差,方差,设置一个对应的阈值,小于这个阈值的特征就会被过滤掉;最常使用的评价方法有方差选择法 、相关系数法 、卡方检验 、互信息法。

# 过滤式选择,使用的是泰坦尼克号的数据集
test_data = new_data.copy()
from sklearn.feature_selection import VarianceThreshold
train_data = test_data[0].drop(['Survived'],axis = 1).values
test_data = test_data[1].values
#设置属性方差阈值为0.1
selector = VarianceThreshold(0.1)
train_data_1 = selector.fit_transform(train_data)
test_data_1 = test_data.T[selector.get_support()]
test_data_1 = test_data_1.T
test_data_1.shape

2.3、包裹式选择 包裹式选择是需要借助于外部的学习器,一般这种学习器必须有coef_或者feature_importance_这些属性,像是线性模型,树模型都可以学习到特征的权重,或者是特征重要度,基于原始的完整的训练集进行训练,当学习完以后,去除那个权重最小的或者特征重要度最小值对应的特征,重新组织新的训练集,进行特征筛选,知道满足要求为止;

# 包裹式选择,这里使用线性支持向量机来做特征选择
from sklearn.feature_selection import RFE
from sklearn.svm import LinearSVC
x_train = train_data
y_train = new_data[0].Survived.values
estimator = LinearSVC()
selector = RFE(estimator = estimator,n_features_to_select = 18)
train_data_2 = selector.fit_transform(x_train,y_train)
test_data_2 = test_data.T[selector.support_]
test_data_2 = test_data_2.T
test_data_2.shape

2.4、嵌入式选择 和包裹式选择类似,也是需要借助于外部的学习器,但是和包裹式选择不同的是学习器在学习的过程中会不断的进行特征选择,直到满足要求为止。 如果特征的维度过高,一定程度上可以使用降维,比如主成分分析法。

# 嵌入式选择 这里使用随机森林模型
from sklearn.feature_selection import SelectFromModel
from sklearn.ensemble import RandomForestClassifier
estimator = RandomForestClassifier()
selector = SelectFromModel(estimator = estimator,threshold = 'median')
train_data_3 = selector.fit_transform(x_train,y_train)
test_data_3 = test_data.T[selector.get_support()]
test_data_3 = test_data_3.T
test_data_3.shape

这篇关于机器学习中经常使用的特征选择方式+python实现代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1021565

相关文章

如何使用celery进行异步处理和定时任务(django)

《如何使用celery进行异步处理和定时任务(django)》文章介绍了Celery的基本概念、安装方法、如何使用Celery进行异步任务处理以及如何设置定时任务,通过Celery,可以在Web应用中... 目录一、celery的作用二、安装celery三、使用celery 异步执行任务四、使用celery

使用Python绘制蛇年春节祝福艺术图

《使用Python绘制蛇年春节祝福艺术图》:本文主要介绍如何使用Python的Matplotlib库绘制一幅富有创意的“蛇年有福”艺术图,这幅图结合了数字,蛇形,花朵等装饰,需要的可以参考下... 目录1. 绘图的基本概念2. 准备工作3. 实现代码解析3.1 设置绘图画布3.2 绘制数字“2025”3.3

Jsoncpp的安装与使用方式

《Jsoncpp的安装与使用方式》JsonCpp是一个用于解析和生成JSON数据的C++库,它支持解析JSON文件或字符串到C++对象,以及将C++对象序列化回JSON格式,安装JsonCpp可以通过... 目录安装jsoncppJsoncpp的使用Value类构造函数检测保存的数据类型提取数据对json数

Redis事务与数据持久化方式

《Redis事务与数据持久化方式》该文档主要介绍了Redis事务和持久化机制,事务通过将多个命令打包执行,而持久化则通过快照(RDB)和追加式文件(AOF)两种方式将内存数据保存到磁盘,以防止数据丢失... 目录一、Redis 事务1.1 事务本质1.2 数据库事务与redis事务1.2.1 数据库事务1.

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

el-select下拉选择缓存的实现

《el-select下拉选择缓存的实现》本文主要介绍了在使用el-select实现下拉选择缓存时遇到的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录项目场景:问题描述解决方案:项目场景:从左侧列表中选取字段填入右侧下拉多选框,用户可以对右侧

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Linux磁盘分区、格式化和挂载方式

《Linux磁盘分区、格式化和挂载方式》本文详细介绍了Linux系统中磁盘分区、格式化和挂载的基本操作步骤和命令,包括MBR和GPT分区表的区别、fdisk和gdisk命令的使用、常见的文件系统格式以... 目录一、磁盘分区表分类二、fdisk命令创建分区1、交互式的命令2、分区主分区3、创建扩展分区,然后

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Linux中chmod权限设置方式

《Linux中chmod权限设置方式》本文介绍了Linux系统中文件和目录权限的设置方法,包括chmod、chown和chgrp命令的使用,以及权限模式和符号模式的详细说明,通过这些命令,用户可以灵活... 目录设置基本权限命令:chmod1、权限介绍2、chmod命令常见用法和示例3、文件权限详解4、ch