【机器学习300问】106、Inception网络结构如何设计的?这么设计的目的是什么?

2024-06-01 12:04

本文主要是介绍【机器学习300问】106、Inception网络结构如何设计的?这么设计的目的是什么?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        谷歌的Inception网络,也被称为GoogLeNet,是Google在2014年推出的一种深度卷积神经网络(CNN)模型,在这之前的AlexNet、VGG等结构都是通过增大网络的深度(层数)来获得更好的训练效果,但层数的增加会带来很多负作用,比如overfit、梯度消失、梯度爆炸等。Inception网络的核心组成部分是所谓的"Inception模块",这是对传统卷积神经网络架构的创新。

一、Inception模块

(1)Inception模块 

        Inception模块的基本设计理念是通过在一个层内并行地使用不同大小的卷积核(例如1x1, 3x3, 5x5)以及最大池化操作,能够在不显著增加计算负担的前提下,捕获图像的不同尺度特征。具体来说,模块包含以下几个部分:

Inception模块示意图

按照上图中Inception模块中的几个部分,一个个介绍一下他们的作用:

  • 1x1卷积层:Inception模块中的1x1卷积层不仅用于减少计算量,还能够有效控制网络中的参数数量。通过降低特征图的深度(通道数),它减轻了网络的复杂性,从而减少了梯度在深层网络中传播时可能遇到的路径数量,防止梯度爆炸和梯度消失。
  • 3x3和5x5卷积层:Inception模块通过并行使用不同大小的卷积核和池化操作,能够在不同的尺度上提取特征,这增加了网络的多样性,减少了单一路径上的依赖,从而间接帮助梯度更好地传播。但5x5卷积因其较大的感受野而计算成本较高,因此较少使用。
  • 最大池化层:增加模型对不同尺度信息的鲁棒性。
  • 拼接输出:会在深度维度上被拼接(Filter concatenation),形成一个具有丰富特征表示的输出。

(2)Inception网络架构

         通常Inception网络是从几个传统的卷积层开始,用于初步特征提取。然后网络主体由多个Inception模块堆叠而成,每个模块根据需要可能包含不同数量的卷积层和不同配置的Inception结构。在最后的几个模块之后,会使用全局平均池化层来替代全连接层,这一步骤可以显著减少参数数量,同时保持模型的判别能力。之后,通常会接一个或几个全连接层用于最终的分类任务。

GoogLeNet整体架构

        Inception网络经历了多次迭代,从Inception V1到V4,以及Xception等变种。这些后续版本在基础Inception模块上进行了优化,例如引入了批量归一化、因子分解卷积、残差连接等技术,以进一步提高模型的效率和准确性,同时继续解决梯度消失和过拟合等问题。

二、Inception网络结构的优点

        Inception网络无需人为干预以确定使用哪个过滤器或是否进行池化操作,这些参数均由网络内部机制自主决定。你可以给网络添加这些参数的所有可能值,并通过连接这些输出,让网络在训练过程中自我学习,以优化其参数配置,并确定最佳的过滤器组合。

(1)多尺度并行处理

        Inception模块通过并行使用不同大小的卷积核和池化操作,自动地在不同尺度上捕捉特征,这在一定程度上模拟了“自主决定”各种滤波器尺寸的效果,无需人工精确选择单一最优尺寸。这种设计减少了对人工特征工程的依赖,提高了模型的泛化能力。

(2)高效利用计算资源

        通过使用1x1卷积核进行降维,以及分解大尺寸卷积(如用两个3x3卷积代替一个5x5卷积),Inception网络在保持强大表达能力的同时,有效控制了模型的复杂度和计算成本,这是其一大优势。这里用一个例子来说明一下:

① 不包含1x1卷积模块的情况

参数量:

        对于一个5x5卷积层,如果输入通道数为256,输出通道数为64,则参数量为卷积核的尺寸乘以输入通道数再乘以输出通道数,即5\times 5\times 256\times 256

连接数:

        每个神经元的连接数包括所有输入通道上的权重加上一个偏置项。对于5x5卷积核,每个输出通道有 5\times 5\times 256+1 个连接。总连接数为每个输出通道的连接数乘以输出通道数再乘以输出特征图的尺寸,即(5\times 5\times 256\times 256)\times 64 \times n^2

② 包含1x1卷积模块的情况

        在Inception结构中,通常会在5x5卷积之前使用1x1卷积来进行降维,假设1x1卷积的输出通道数为32,这样可以减少后续5x5卷积的计算负担。

参数量:

  • 1x1卷积参数量:1 \times 1 \times 256 \times 32
  • 5x5卷积参数量:在经过1x1卷积降维后,输入通道变为32,所以参数量为5 \times 5 \times 32 \times 64

连接数:

  • 1x1卷积的每个输出通道有1 \times 1 \times 256 + 1个连接,总共(1 \times 1 \times 256 + 1) \times 32 \times n^2个连接。
  • 5x5卷积的每个输出通道有5 \times 5 \times 32 + 1个连接,总共有(5 \times 5 \times 32 + 1) \times 64 \times n^2个连接。
  • 总连接数为两部分之和

③ 计算结果

  • 不包含1x1卷积模块时,对于输出特征图尺寸为 7×7 的情况,连接数为约 20,073,536
  • 包含1x1卷积模块时,同样的输出尺寸下,连接数减少到约 2,914,912
  • 不包含1x1卷积模块的情况下参数量为 409,600
  • 包含1x1卷积模块的情况下参数量为 59,392

        计算证实包含1x1卷积模块的结构显著减少了模型的参数量和连接数,从而降低了计算复杂度,提高了训练效率,同时保持了模型的表达能力。

(3)集成多种特征

        Inception模块的结构允许网络整合不同类型的特征信息(局部的、全局的、不同尺度的),这种集成方式有利于学习更丰富的图像表示,提高分类或检测的准确性。

(4)灵活可拓展

        Inception网络的模块化设计便于调整和扩展,研究人员可以根据特定任务的需求,通过增加或修改Inception模块来优化模型结构,这赋予了模型极高的灵活性。

这篇关于【机器学习300问】106、Inception网络结构如何设计的?这么设计的目的是什么?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1020957

相关文章

Python中的可视化设计与UI界面实现

《Python中的可视化设计与UI界面实现》本文介绍了如何使用Python创建用户界面(UI),包括使用Tkinter、PyQt、Kivy等库进行基本窗口、动态图表和动画效果的实现,通过示例代码,展示... 目录从像素到界面:python带你玩转UI设计示例:使用Tkinter创建一个简单的窗口绘图魔法:用

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识