GPTQ 量化大模型

2024-06-01 00:04
文章标签 模型 量化 gptq

本文主要是介绍GPTQ 量化大模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

GPTQ 量化大模型

GPTQ 算法

GPTQ 算法由 Frantar 等人 (2023) 提出,它从 OBQ 方法中汲取灵感,但进行了重大改进,可以将其扩展到(非常)大型的语言模型。

步骤 1:任意顺序量化

OBQ 方法选择权重按特定顺序进行量化,该顺序由增加的额外误差最小决定。然而,GPTQ 观察到,对于大型模型,以任何固定顺序量化权重都可以获得同样好的效果。这是因为即使某些权重可能单独引入更多误差,但它们会在流程后期量化,此时剩下的其他权重很少,这可能会增加误差。所以顺序并不像我们想象的那么重要。

基于这一见解,GPTQ 旨在以相同的顺序量化矩阵所有行的所有权重。这使得该过程更快,因为某些计算只需对每列进行一次,而不是对每个权重进行一次。

步骤 2:惰性批量更新

这种方案速度不快,因为它需要更新一个巨大的矩阵,而每个块的计算量却很少。这种类型的操作无法充分利用 GPU 的计算能力,并且会因内存限制(内存吞吐量瓶颈)而变慢。

为了解决这个问题,GPTQ 引入了“惰性批量更新”。事实证明,列的最终量化仅受对该列更新的影响,而不会受后续列的影响。因此,GPTQ 可以一次将算法应用于一批列(例如 128 列),仅更新这些列和矩阵的相应块。在处理完一个块后,该算法会对整个矩阵执行全局更新。

步骤 3:Cholesky 重构

然而,还有一个问题需要解决。当算法扩展到非常大的模型时,数值不准确可能会成为一个问题。具体来说,重复应用某一操作可能会累积数值误差。

为了解决这个问题,GPTQ 使用了Cholesky 分解,这是一种解决某些数学问题的数值稳定方法。它涉及使用 Cholesky 方法从矩阵中预先计算一些所需信息。这种方法与轻微的“阻尼”(在矩阵的对角元素中添加一个小常数)相结合,有助于算法避免数值问题。

完整的算法可以概括为几个步骤:
GPTQ 算法首先对 Hessian 逆进行 Cholesky 分解(该矩阵有助于决定如何调整权重)
然后它循环运行,一次处理一批列。
对于批次中的每一列,它量化权重,计算误差,并相应地更新块中的权重。
处理批次后,它会根据块的错误更新所有剩余的权重。

使用 AutoGPTQ 库实现 GPTQ 算法并量化 GPT-2 模型

# 导入随机数模块
import random# 导入AutoGPTQ库中的类,用于量化模型
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig# 导入load_dataset函数,用于加载数据集
from datasets import load_dataset# 导入PyTorch库
import torch# 导入transformers库中的AutoTokenizer,用于文本编码
from transformers import AutoTokenizer# 定义基础模型名称和量化后模型的输出目录
model_id = "gpt2"  # 使用gpt2作为基础模型
out_dir = model_id + "-GPTQ"  # 输出目录为模型ID加上"-GPTQ"# 加载量化配置、模型和分词器
# 量化配置设置:4位量化,组大小为128,阻尼百分比为0.01,不使用激活函数量化
quantize_config = BaseQuantizeConfig(bits=4,group_size=128,damp_percent=0.01,desc_act=False,
)
# 从预训练模型加载并应用量化配置
model = AutoGPTQForCausalLM.from_pretrained(model_id, quantize_config)
# 加载与模型匹配的分词器
tokenizer = AutoTokenizer.from_pretrained(model_id)# 加载数据并进行分词处理
# 使用allenai的c4数据集,限制加载的数据文件和数据条数
n_samples = 1024
data = load_dataset("allenai/c4", data_files="en/c4-train.00001-of-01024.json.gz", split=f"train[:{n_samples*5}]")
# 将文本数据连接并使用分词器进行编码
tokenized_data = tokenizer("\n\n".join(data['text']), return_tensors='pt')# 格式化分词后的样本
# 初始化一个空列表来存储格式化后的样本
examples_ids = []
# 遍历以创建n_samples个样本
for _ in range(n_samples):# 随机选择起始索引,确保序列长度不超过模型最大长度i = random.randint(0, tokenized_data.input_ids.shape[1] - tokenizer.model_max_length - 1)j = i + tokenizer.model_max_length  # 计算结束索引# 提取输入ID和创建相应的注意力掩码input_ids = tokenized_data.input_ids[:, i:j]attention_mask = torch.ones_like(input_ids)  # 注意力掩码全为1,表示所有token都需要被模型注意# 将输入ID和注意力掩码添加到样本列表中examples_ids.append({'input_ids': input_ids, 'attention_mask': attention_mask})# 计时开始
%%time# 使用GPTQ进行量化
# 使用前面准备的样本、指定的batch_size和启用Triton优化进行量化
model.quantize(examples_ids,batch_size=1,use_triton=True,
)# 保存量化后的模型和分词器到指定目录
# 使用safetensors格式保存模型权重,该格式更安全且更易于分享
model.save_quantized(out_dir, use_safetensors=True)
tokenizer.save_pretrained(out_dir)  # 保存分词器到同一目录以便之后使用

量化后的效果

# 定义基础模型名称和量化后模型的输出目录
model_id = "gpt2"  # 使用gpt2作为基础模型
out_dir = model_id + "-GPTQ"  # 输出目录为模型ID加上"-GPTQ"# 设定设备为CUDA(如果可用)否则使用CPU
device = "cuda:0" if torch.cuda.is_available() else "cpu"
# 这行代码检查是否有GPU可以使用,如果有,则在GPU上运行后续的模型操作,否则在CPU上运行。# 重新加载模型和分词器
model = AutoGPTQForCausalLM.from_quantized(out_dir,  # 指定之前保存的量化模型目录device=device,  # 使用之前设定的设备use_triton=True,  # 启用Triton加速(如果安装并配置了Triton推理服务器)use_safetensors=True,  # 指定使用safetensors格式加载模型权重
)
# 从量化模型的保存目录加载分词器
tokenizer = AutoTokenizer.from_pretrained(out_dir)# 导入transformers库中的pipeline功能
from transformers import pipeline# 创建一个文本生成的pipeline,使用刚加载的模型和分词器
generator = pipeline('text-generation', model=model, tokenizer=tokenizer)# 使用pipeline生成文本,输入为"I have a dream",开启采样以增加多样性,限制生成的最大长度为50
result = generator("I have a dream ", do_sample=True, max_length=50)[0]['generated_text']# 打印生成的文本结果
print(result)

这篇关于GPTQ 量化大模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1019424

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号