GUID(GPT)分区表详解

2024-05-31 18:18
文章标签 详解 gpt 分区表 guid

本文主要是介绍GUID(GPT)分区表详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

保护MBR

保护MBR包含一个DOS分区表(LBA0),只包含一个类型值为0xEE的分区项,在小于2TB的磁盘上,大小为整个磁盘;在更大的磁盘上,它的大小固定为2TB。它的作用是阻止不能识别GPT分区的磁盘工具试图对其进行格式化等操作,所以该扇区被称为“保护MBR”。实际上,EFI根本不使用这个分区表。

EFI部分

EFI部分又可以分为4个区域:EFI信息区(GPT头)、分区表、GPT分区、备份区域。

EFI信息区(GPT头)

起始于磁盘的LBA1,通常也只占用这个单一扇区。其作用是定义分区表的位置和大小。GPT头还包含头和分区表的校验和,这样就可以及时发现错误。

分区表

分区表区域包含分区表项。这个区域由GPT头定义,一般占用磁盘LBA2~LBA33扇区。分区表中的每个分区项由起始地址、结束地址、类型值、名字、属性标志、GUID值组成。分区表建立后,128位的GUID对系统来说是唯一的。

GPT分区

最大的区域,由分配给分区的扇区组成。这个区域的起始和结束地址由GPT头定义。

备份区

备份区域位于磁盘的尾部,包含GPT头和分区表的备份。它占用GPT结束扇区和EFI结束扇区之间的33个扇区。其中最后一个扇区用来备份1号扇区的EFI信息,其余的32个扇区用来备份LBA2~LBA33扇区的分区表。

EFI信息区数据结构

EFI信息区位于磁盘的1号扇区(LBA1),也称为GPT头。其具体结构如下表所示

EFI信息区结构
相对字节偏移量
(十六进制)
字节数说明[整数皆以little endian方式表示]
00~078GPT头签名“45 46 49 20 50 41 52 54”(ASCII码为“EFI PART”)
08~0B4版本号,目前是1.0版,其值是“00 00 01 00”
0C~0F4GPT头的大小(字节数),通常为“5C 00 00 00”(0x5C),也就是92字节。
10~134GPT头CRC校验和(计算时把这个字段本身看做零值)
14~174保留,必须为“00 00 00 00”
18~1F8EFI信息区(GPT头)的起始扇区号,通常为“01 00 00 00 00 00 00 00”,也就是LBA1。
20~278EFI信息区(GPT头)备份位置的扇区号,也就是EFI区域结束扇区号。通常是整个磁盘最末一个扇区。
28~2F8GPT分区区域的起始扇区号,通常为“22 00 00 00 00 00 00 00”(0x22),也即是LBA34。
30~378GPT分区区域的结束扇区号,通常是倒数第34扇区。
38~4716磁盘GUID(全球唯一标识符,与UUID是同义词)
48~4F8分区表起始扇区号,通常为“02 00 00 00 00 00 00 00”(0x02),也就是LBA2。
50~534分区表总项数,通常限定为“80 00 00 00”(0x80),也就是128个。
54~574每个分区表项占用字节数,通常限定为“80 00 00 00”(0x80),也就是128字节。
58~5B4分区表CRC校验和
5C~**保留,通常是全零填充

分区项

分区项结构
相对字节偏移量
(十六进制)
字节数说明[整数皆以little endian方式表示]
00~0F16用GUID表示的分区类型
10~1F16用GUID表示的分区唯一标示符
20~278该分区的起始扇区,用LBA值表示。
28~2F8该分区的结束扇区(包含),用LBA值表示,通常是奇数。
30~378该分区的属性标志
38~7F72UTF-16LE编码的人类可读的分区名称,最大32个字符。

注意,扇区尺寸不能假定为512字节,也就是说,一个扇区内可能存放4个以上的分区项,也可能只存放一个分区项的一部分。也就是说,除了头两个扇区(LBA 0 和 LBA 1)之外,GPT规范仅定义了数据结构的尺寸,而不关心使用多少个扇区进行存储。

分区类型
相关操作系统GUID[little endian]含义
None00000000-0000-0000-0000-000000000000未使用
None024DEE41-33E7-11D3-9D69-0008C781F39FMBR分区表
NoneC12A7328-F81F-11D2-BA4B-00A0C93EC93BEFI系统分区[EFI System partition (ESP)],必须是VFAT格式
NoneBC13C2FF-59E6-4262-A352-B275FD6F7172扩展boot分区,必须是VFAT格式
None21686148-6449-6E6F-744E-656564454649BIOS引导分区,其对应的ASCII字符串是"Hah!IdontNeedEFI"。
NoneD3BFE2DE-3DAF-11DF-BA40-E3A556D89593Intel Fast Flash (iFFS) partition (for Intel Rapid Start technology)
WindowsE3C9E316-0B5C-4DB8-817D-F92DF00215AE微软保留分区
WindowsEBD0A0A2-B9E5-4433-87C0-68B6B72699C7基本数据分区
WindowsDE94BBA4-06D1-4D40-A16A-BFD50179D6ACWindows恢复环境
Linux0FC63DAF-8483-4772-8E79-3D69D8477DE4数据分区。Linux曾经使用和Windows基本数据分区相同的GUID。
这个新的GUID是由 GPT fdisk 和 GNU Parted 开发者根据Linux传统的"8300"分区代码发明的。
Linux44479540-F297-41B2-9AF7-D131D5F0458Ax86根分区 (/) 这是systemd的发明,可用于无fstab时的自动挂载
Linux4F68BCE3-E8CD-4DB1-96E7-FBCAF984B709x86-64根分区 (/) 这是systemd的发明,可用于无fstab时的自动挂载
Linux69DAD710-2CE4-4E3C-B16C-21A1D49ABED3ARM32根分区 (/) 这是systemd的发明,可用于无fstab时的自动挂载
LinuxB921B045-1DF0-41C3-AF44-4C6F280D3FAEAArch64根分区 (/) 这是systemd的发明,可用于无fstab时的自动挂载
Linux3B8F8425-20E0-4F3B-907F-1A25A76F98E8服务器数据分区(/srv) 这是systemd的发明,可用于无fstab时的自动挂载
Linux933AC7E1-2EB4-4F13-B844-0E14E2AEF915HOME分区 (/home) 这是systemd的发明,可用于无fstab时的自动挂载
Linux0657FD6D-A4AB-43C4-84E5-0933C84B4F4F交换分区(swap) 不是systemd的发明,但同样可用于无fstab时的自动挂载
LinuxA19D880F-05FC-4D3B-A006-743F0F84911ERAID分区
LinuxE6D6D379-F507-44C2-A23C-238F2A3DF928逻辑卷管理器(LVM)分区
Linux8DA63339-0007-60C0-C436-083AC8230908保留

Microsoft还进一步对分区的属性进行了细分:低位4字节表示与分区类型无关的属性,高位4字节表示与分区类型有关的属性。Microsoft目前使用了下列属性:

分区属性
Bit解释
0系统分区(磁盘分区工具必须将此分区保持原样,不得做任何修改)
1EFI隐藏分区(EFI不可见分区)
2传统的BIOS的可引导分区标志
60只读
62隐藏
63不自动挂载,也就是不自动分配盘符

这篇关于GUID(GPT)分区表详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1018678

相关文章

Redis实现延迟任务的三种方法详解

《Redis实现延迟任务的三种方法详解》延迟任务(DelayedTask)是指在未来的某个时间点,执行相应的任务,本文为大家整理了三种常见的实现方法,感兴趣的小伙伴可以参考一下... 目录1.前言2.Redis如何实现延迟任务3.代码实现3.1. 过期键通知事件实现3.2. 使用ZSet实现延迟任务3.3

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

Python Faker库基本用法详解

《PythonFaker库基本用法详解》Faker是一个非常强大的库,适用于生成各种类型的伪随机数据,可以帮助开发者在测试、数据生成、或其他需要随机数据的场景中提高效率,本文给大家介绍PythonF... 目录安装基本用法主要功能示例代码语言和地区生成多条假数据自定义字段小结Faker 是一个 python

Java Predicate接口定义详解

《JavaPredicate接口定义详解》Predicate是Java中的一个函数式接口,它代表一个判断逻辑,接收一个输入参数,返回一个布尔值,:本文主要介绍JavaPredicate接口的定义... 目录Java Predicate接口Java lamda表达式 Predicate<T>、BiFuncti

详解如何通过Python批量转换图片为PDF

《详解如何通过Python批量转换图片为PDF》:本文主要介绍如何基于Python+Tkinter开发的图片批量转PDF工具,可以支持批量添加图片,拖拽等操作,感兴趣的小伙伴可以参考一下... 目录1. 概述2. 功能亮点2.1 主要功能2.2 界面设计3. 使用指南3.1 运行环境3.2 使用步骤4. 核

一文详解JavaScript中的fetch方法

《一文详解JavaScript中的fetch方法》fetch函数是一个用于在JavaScript中执行HTTP请求的现代API,它提供了一种更简洁、更强大的方式来处理网络请求,:本文主要介绍Jav... 目录前言什么是 fetch 方法基本语法简单的 GET 请求示例代码解释发送 POST 请求示例代码解释

详解nginx 中location和 proxy_pass的匹配规则

《详解nginx中location和proxy_pass的匹配规则》location是Nginx中用来匹配客户端请求URI的指令,决定如何处理特定路径的请求,它定义了请求的路由规则,后续的配置(如... 目录location 的作用语法示例:location /www.chinasem.cntestproxy

CSS will-change 属性示例详解

《CSSwill-change属性示例详解》will-change是一个CSS属性,用于告诉浏览器某个元素在未来可能会发生哪些变化,本文给大家介绍CSSwill-change属性详解,感... will-change 是一个 css 属性,用于告诉浏览器某个元素在未来可能会发生哪些变化。这可以帮助浏览器优化

Python基础文件操作方法超详细讲解(详解版)

《Python基础文件操作方法超详细讲解(详解版)》文件就是操作系统为用户或应用程序提供的一个读写硬盘的虚拟单位,文件的核心操作就是读和写,:本文主要介绍Python基础文件操作方法超详细讲解的相... 目录一、文件操作1. 文件打开与关闭1.1 打开文件1.2 关闭文件2. 访问模式及说明二、文件读写1.

详解C++中类的大小决定因数

《详解C++中类的大小决定因数》类的大小受多个因素影响,主要包括成员变量、对齐方式、继承关系、虚函数表等,下面就来介绍一下,具有一定的参考价值,感兴趣的可以了解一下... 目录1. 非静态数据成员示例:2. 数据对齐(Padding)示例:3. 虚函数(vtable 指针)示例:4. 继承普通继承虚继承5.