MindSpore实践图神经网络之GCN

2024-05-31 15:20

本文主要是介绍MindSpore实践图神经网络之GCN,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

GCN介绍

  • 图卷积网络(GCN)于2016年提出,旨在对图结构数据进行半监督学习。它提出了一种基于卷积神经网络有效变体的可扩展方法,可直接在图上操作。该模型在图边缘的数量上线性缩放,并学习隐藏层表示,这些表示编码了局部图结构和节点特征。

  • GCN(图卷积神经网络) 类似CNN(卷积神经网络),只不过CNN用于二维数据结构,GCN用于图数据结构。GCN实际上跟CNN的作用一样,就是一个特征提取器,只不过它的对象是图数据。GCN精妙地设计了一种从图数据中提取特征的方法。

  • GCN包含两个图卷积层。每一层以节点特征和邻接矩阵为输入,通过聚合相邻特征来更新节点特征。

环境配置

  • 配置MindSpore环境
# 控制台安装mindspore 
conda create -n py39_ms18 python=3.9
conda activate py39_ms18pip install https://ms-release.obs.cn-north-4.myhuaweicloud.com/1.8.1/MindSpore/cpu/x86_64/mindspore-1.8.1-cp39-cp39-linux_x86_64.whl --trusted-host ms-release.obs.cn-north-4.myhuaweicloud.com -i https://pypi.tuna.tsinghua.edu.cn/simple# 验证是否安装成功
python -c "import mindspore;mindspore.run_check()"conda activate py39_ms18
  • 配置python环境
conda activate py39_ms18pip install numpy
pip install scipy
pip install sklearn
pip install pyyaml
# 缺包
pip  install matplotlib

算子开发

  • 算子开发:Layer、Model
# 定义算子:Layer
class GraphConvolution(nn.Cell):def __init__(self,feature_in_dim,feature_out_dim,dropout_ratio=None,activation=None):super(GraphConvolution, self).__init__()self.in_dim = feature_in_dimself.out_dim = feature_out_dimself.weight_init = glorot([self.out_dim, self.in_dim])self.fc = nn.Dense(self.in_dim,self.out_dim,weight_init=self.weight_init,has_bias=False)self.dropout_ratio = dropout_ratioif self.dropout_ratio is not None:self.dropout = nn.Dropout(keep_prob=1-self.dropout_ratio)self.dropout_flag = self.dropout_ratio is not Noneself.activation = get_activation(activation)self.activation_flag = self.activation is not Noneself.matmul = P.MatMul()def construct(self, adj, input_feature):"""GCN graph convolution layer."""dropout = input_featureif self.dropout_flag:dropout = self.dropout(dropout)fc = self.fc(dropout)output_feature = self.matmul(adj, fc)if self.activation_flag:output_feature = self.activation(output_feature)return output_feature# 定义模型:Model
class GCN(nn.Cell):def __init__(self, config, input_dim, output_dim):super(GCN, self).__init__()self.layer0 = GraphConvolution(input_dim, config.hidden1, activation="relu", dropout_ratio=config.dropout)self.layer1 = GraphConvolution(config.hidden1, output_dim, dropout_ratio=None)def construct(self, adj, feature):output0 = self.layer0(adj, feature)output1 = self.layer1(adj, output0)return output1
  • 数据处理utils
# 归一化邻接矩阵
def normalize_adj(adj):"""Symmetrically normalize adjacency matrix."""rowsum = np.array(adj.sum(1))d_inv_sqrt = np.power(rowsum, -0.5).flatten()d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0.d_mat_inv_sqrt = sp.diags(d_inv_sqrt)return adj.dot(d_mat_inv_sqrt).transpose().dot(d_mat_inv_sqrt).tocoo()# 加载数据集  : Cora
def get_adj_features_labels(data_dir):"""Get adjacency matrix, node features and labels from dataset."""g = ds.GraphData(data_dir)nodes = g.get_all_nodes(0)nodes_list = nodes.tolist()row_tensor = g.get_node_feature(nodes_list, [1, 2])features = row_tensor[0]labels = row_tensor[1]nodes_num = labels.shape[0]class_num = labels.max() + 1labels_onehot = np.eye(nodes_num, class_num)[labels].astype(np.float32)neighbor = g.get_all_neighbors(nodes_list, 0)node_map = {node_id: index for index, node_id in enumerate(nodes_list)}adj = np.zeros([nodes_num, nodes_num], dtype=np.float32)for index, value in np.ndenumerate(neighbor):# The first column of neighbor is node_id, second column to last column are neighbors of the first column.# So we only care index[1] > 1.# If the node does not have that many neighbors, -1 is padded. So if value < 0, we will not deal with it.if value >= 0 and index[1] > 0:adj[node_map[neighbor[index[0], 0]], node_map[value]] = 1adj = sp.coo_matrix(adj)adj = adj + adj.T.multiply(adj.T > adj) + sp.eye(nodes_num)nor_adj = normalize_adj(adj)nor_adj = np.array(nor_adj.todense())return nor_adj, features, labels_onehot, labels# 数据集划分
def get_mask(total, begin, end):"""Generate mask."""mask = np.zeros([total]).astype(np.float32)mask[begin:end] = 1return mask

Windows环境跑脚本报错(1)

问题描述

/mnt/d/mindspore_gallery/models/gnn/gcn/data
cora
data_mr exist
scripts/run_process_data.sh: line 46: cd: ../../../utils/graph_to_mindrecord: No such file or directory

根因分析

  • 由报错信息可以看出可能是数据集存放路径不对,或者windows下脚本和Linux不一致

解决办法

  • 修改路径,改为如下路径
../../utils/graph_to_mindrecord
  • 改到Linux环境,如果没有Linux环境可以安装WSL2,创建Ubuntu环境
    image.png

Windows环境跑脚本报错(2)

问题描述

{'data_dir': 'Dataset directory', 'train_nodes_num': 'Nodes numbers for training', 'eval_nodes_num': 'Nodes numbers for evaluation', 'test_nodes_num': 'Nodes numbers for test', 'save_TSNE': 'Whether to save t-SNE graph'}
Traceback (most recent call last):File "D:\mindspore_gallery\models\gnn\gcn\train.py", line 196, in <module>run_train()File "D:\mindspore_gallery\models\gnn\gcn\model_utils\moxing_adapter.py", line 105, in wrapped_funcrun_func(*args, **kwargs)File "D:\mindspore_gallery\models\gnn\gcn\train.py", line 114, in run_traincontext.set_context(mode=context.GRAPH_MODE,File "C:\Users\sunxiaobei\.conda\envs\py39_ms18\lib\site-packages\mindspore\_checkparam.py", line 1210, in wrapperreturn func(*args, **kwargs)File "C:\Users\sunxiaobei\.conda\envs\py39_ms18\lib\site-packages\mindspore\_checkparam.py", line 1179, in wrapperreturn func(*args, **kwargs)File "C:\Users\sunxiaobei\.conda\envs\py39_ms18\lib\site-packages\mindspore\context.py", line 911, in set_contextraise ValueError(f"For 'context.set_context', package type {__package_name__} support 'device_target' "
ValueError: For 'context.set_context', package type mindspore support 'device_target' type cpu, but got Ascend.

根因分析

  • 从log上不难看出,是代码指定的设备不一致,当前设备只有CPU,但是指定的是Ascent , 需要指定和实际环境一致的设备

解决办法

  • 修改代码,指定CPU
    context.set_context(mode=context.GRAPH_MODE,device_target="CPU", save_graphs=False)  # CPU  Ascend  GPU

运行代码

python train.py --data_dir=./data_mr/citeseer --train_nodes_num=120

image.png

这篇关于MindSpore实践图神经网络之GCN的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1018306

相关文章

jdk1.8的Jenkins安装配置实践

《jdk1.8的Jenkins安装配置实践》Jenkins是一款流行的开源持续集成工具,支持自动构建、测试和部署,通过Jenkins,开发团队可以实现代码提交后自动进行构建、测试,并将构建结果分发到测... 目录Jenkins介绍Jenkins环境搭建Jenkins安装配置Jenkins插件安装Git安装配

SpringBoot的全局异常拦截实践过程

《SpringBoot的全局异常拦截实践过程》SpringBoot中使用@ControllerAdvice和@ExceptionHandler实现全局异常拦截,@RestControllerAdvic... 目录@RestControllerAdvice@ResponseStatus(...)@Except

mysql_mcp_server部署及应用实践案例

《mysql_mcp_server部署及应用实践案例》文章介绍了在CentOS7.5环境下部署MySQL_mcp_server的步骤,包括服务安装、配置和启动,还提供了一个基于Dify工作流的应用案例... 目录mysql_mcp_server部署及应用案例1. 服务安装1.1. 下载源码1.2. 创建独立

SpringBoot简单整合ElasticSearch实践

《SpringBoot简单整合ElasticSearch实践》Elasticsearch支持结构化和非结构化数据检索,通过索引创建和倒排索引文档,提高搜索效率,它基于Lucene封装,分为索引库、类型... 目录一:ElasticSearch支持对结构化和非结构化的数据进行检索二:ES的核心概念Index:

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度

C++ move 的作用详解及陷阱最佳实践

《C++move的作用详解及陷阱最佳实践》文章详细介绍了C++中的`std::move`函数的作用,包括为什么需要它、它的本质、典型使用场景、以及一些常见陷阱和最佳实践,感兴趣的朋友跟随小编一起看... 目录C++ move 的作用详解一、一句话总结二、为什么需要 move?C++98/03 的痛点⚡C++

MySQL存储过程实践(in、out、inout)

《MySQL存储过程实践(in、out、inout)》文章介绍了数据库中的存储过程,包括其定义、优缺点、性能调校与撰写,以及创建和调用方法,还详细说明了存储过程的参数类型,包括IN、OUT和INOUT... 目录简述存储过程存储过程的优缺点优点缺点存储过程的创建和调用mysql 存储过程中的关键语法案例存储

Java 的ArrayList集合底层实现与最佳实践

《Java的ArrayList集合底层实现与最佳实践》本文主要介绍了Java的ArrayList集合类的核心概念、底层实现、关键成员变量、初始化机制、容量演变、扩容机制、性能分析、核心方法源码解析、... 目录1. 核心概念与底层实现1.1 ArrayList 的本质1.1.1 底层数据结构JDK 1.7

JDK21对虚拟线程的几种用法实践指南

《JDK21对虚拟线程的几种用法实践指南》虚拟线程是Java中的一种轻量级线程,由JVM管理,特别适合于I/O密集型任务,:本文主要介绍JDK21对虚拟线程的几种用法,文中通过代码介绍的非常详细,... 目录一、参考官方文档二、什么是虚拟线程三、几种用法1、Thread.ofVirtual().start(

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础