python 基础知识梳理——GIL(全局解释器锁)

2024-05-31 01:32

本文主要是介绍python 基础知识梳理——GIL(全局解释器锁),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

python 基础知识梳理——GIL(全局解释器锁)


1. 引言

之前的博文中,整理了关于Python中的多进程、多线程,还有协程的基本使用,当时我们就讨论过,Python中的多线程其实并不是"真正"的多线程,为什么呢?这就和GIL离不开关系了,下面我们通过几个列子来看一看Python中的GIL是如何影响Python中多线程的使用的。

1.1 为什么变慢了?

import time
def Countnumber(n):while n > 0:n -= 1
start = time.time()
Countnumber(100000000)
end = time.time()
print('运行时间为:{}秒'.format(end-start))
# 输出
运行时间为:6.358428239822388

在我这台2015 early MacBook Pro13单线程的情况下,运行时间为6.3秒,下面我们使用多线程来加速:

import time
import threading
N = 100000000
def Countnumber(n):while n > 0:n -= 1start = time.time()
t1 = threading.Thread(target=Countnumber,args=[N // 2 ])
t2 = threading.Thread(target=Countnumber,args=[N // 2 ])
t3 = threading.Thread(target=Countnumber,args=[N // 2 ])
t4 = threading.Thread(target=Countnumber,args=[N // 2 ])
t1.start()
t2.start()
t3.start()
t4.start()
t1.join()
t2.join()
t3.join()
t4.join()
end = time.time()
print('运行时间为:{}秒'.format(end-start))
# 输出
运行时间为:12.465165138244629

我们用了4个线程,没想到时间居然变成了之前的2倍,足足12秒?

2. GIL

其实,我们增加了多线程而速度却变慢的原因是由于GIL,导致Python线程的性能并不能达到我们所期待的那样。

GIL是Python自带解释器,也是最流行的Python解释器CPython中的一个技术,它的中文名为:全局解释器锁,每个Python线程,在CPython解释器中执行的时候,都会先锁住自己的线程,阻止别的线程执行。

而且,CPython会假装轮流执行Python线程,让我们看起来以为Python中的线程是在交错执行。

那为什么CPython为什么要使用GIL呢?其实这涉及到Python中的垃圾回收机制的引用计数。

Python的垃圾回收机制是以引用计数为主,标记-清除和分代回收为辅的策略。

import sys
a = []
b = a
print(sys.getrefcount(a))
# 输出
3 

输出为a的引用计数 3 ,因为a、b和作为参数传递的getrefcount这三个地方都引用了一个空列表。回到刚刚我们使用的多线程,如果两个Python线程同时引用了a,那么就会造成引用计数的race condition(竞争),引用计数可能只会增加1,当第一个线程访问结束后,会把引用计数减少1,这时可能会达到条件释放内存,当第二个线程再想访问a时,就找不到有效的内存了(引用计数为0会被回收)。

所以说,CPython引用GIl其实主要是两个原因:

  • 为了规避内存管理的race condition(竞争)问题
  • 顾名思义,CPython就是使用C解释Python语言,而大部分C语言库都不是原生线程安全的

3. GIl是如何工作的?

2020-12-25 031713

如图,当Thread1、2、3轮流执行的时候,每一个线程会在开始执行时,锁住GIL,以阻止别的线程执行;当该线程执行完成后会释放GIL,以便其他线程可以开始执行。

CPython中的check_interval机制会轮训检查线程GIL的锁情况,每隔一段时间,Python解释器就会强制当前的线程去释放GIL,这样别的线程才能有机会去执行。

Python3中,CPython会在一个“合理”的范围内释放GIL(以Python3为例,interval的时间大概是15毫秒)

2020-12-25 031700

从底层代码中,我们可以一探究竟,基本上每一个Python都是类似于这样的循环封装:

for (;;) {if (--ticker < 0) {ticker = check_interval;/* Give another thread a chance */PyThread_release_lock(interpreter_lock);/* Other threads may run now */PyThread_acquire_lock(interpreter_lock, 1);}bytecode = *next_instr++;switch (bytecode) {/* execute the next instruction ... */ }
}

很显然,Python的每个线程都会检查ticker计数,只有ticker计数大于0的情况下,线程才会去执行自己的byetecode

4. Python的线程安全

之前我们谈论到多线程的时候,经常会说,要使用threading.lock()先锁住一个共享变量,当修改完成后再给其他线程使用?

这是因为,GIL仅允许一个Python线程执行,不意味着Python的线程就是完全安全的。

下面我们参考一段代码:

import threadingn = 0
def foo():global nn += 1threads = []
for i in range(1000):t = threading.Thread(target=foo)threads.append(t)
for t in threads:t.start()
for t in threads:t.join()
print(n)
import dis
print(dis.dis(foo))
# 输出6           0 LOAD_GLOBAL              0 (n)2 LOAD_CONST               1 (1)4 INPLACE_ADD6 STORE_GLOBAL             0 (n)8 LOAD_CONST               0 (None)10 RETURN_VALUE
None

大部分情况下,输出结果都是1000,但是也有可能是999、998,这是因为n += 1这一行代码让线程并不安全。

当我们通过dis.dis()打印foo()这个函数的bytecode的时候,就会发现这6行的bytecode中间都是可能被打断的。

所以,我们可以使用threading.Lock()来确保线程安全

n = 0
lock = threading.Lock()
def foo():global nwith lock:n += 1

5. 如何绕过GIL?

加入你曾经看过我之前的博文,一定会对%time魔术方法印象深刻,这是我常用的一款基于iPython解释器的jupyter notebook上的一种输出函数运行时间的方法,它的解释器就并不是CPython,那么就不受GIL的影响了。

事实上,如果你是深度学习或者机器学习乃至数据分析,人工智能相关专业的同学,那么你一定不会对NumPy陌生,这样的矩阵运算库底层也是用C实现的,且不受GIL的影响。

说了那么多,你会不会感觉我在说废话?其实,绕过GIL的大致思路就是两种:

  • 绕过CPython,使用IPython或者JPython(Java实现的Python解释器)等解释器实现;
  • 把对于性能要求高的代码,放到别的语言中实现;

6.奇怪的想法

import time
import multiprocessing
N = 100000000
def Countnumber(n):while n > 0:n -= 1start = time.time()
t1 = multiprocessing.Process(target=Countnumber,args=[N // 2])
t2 = multiprocessing.Process(target=Countnumber,args=[N // 2])t1.start()
t2.start()t1.join()
t2.join()end = time.time()
print('运行时间为:{}秒'.format(end-start))
# 输出
运行时间为:3.4095828533172607

居然使用多进程,速度就快了一倍?






博文的后续更新,请关注我的个人博客:星尘博客

这篇关于python 基础知识梳理——GIL(全局解释器锁)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1017203

相关文章

Spring Boot @RestControllerAdvice全局异常处理最佳实践

《SpringBoot@RestControllerAdvice全局异常处理最佳实践》本文详解SpringBoot中通过@RestControllerAdvice实现全局异常处理,强调代码复用、统... 目录前言一、为什么要使用全局异常处理?二、核心注解解析1. @RestControllerAdvice2

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

MySQL中的锁机制详解之全局锁,表级锁,行级锁

《MySQL中的锁机制详解之全局锁,表级锁,行级锁》MySQL锁机制通过全局、表级、行级锁控制并发,保障数据一致性与隔离性,全局锁适用于全库备份,表级锁适合读多写少场景,行级锁(InnoDB)实现高并... 目录一、锁机制基础:从并发问题到锁分类1.1 并发访问的三大问题1.2 锁的核心作用1.3 锁粒度分