本文主要是介绍简单理解Kalman滤波,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
以下内容来自https://www.cnblogs.com/Jessica-jie/p/6893473.html
1.卡尔曼滤波中的真实值,测量值,预测值,估计值怎么区分?
他的5条公式是其核心内容,结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式.
用一个简单的小例子:假设我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的, 也就是现在这一分钟的温度等于过去一分钟的温度(假设我们用一分钟来做时间单位)(先验估计) 。假设你对你的经验不是 100% 的相信,可能会有上下偏差几度。我们把这些偏差看成是高斯白噪声,也就是这些偏差跟前后时间是没有关系的而且符合高斯分布。另外,我们在房间里放一个温度计,但是这个温度计也不准确的, 测量值和实际值有偏差,我们也把这些偏差看成是高斯白噪声。好了, 现在对于某一分钟我们有两个有关于该房间的温度值: 你根据经验的预测值 (系统的 预测值)和温度计的值(测量值)。
Kalman要解决的问题是如何使用这两个值结合他们各自的噪声来估算出房间的实际温度值。
假如我们要估算k时刻的实际温度值.首先你要根据k-1时刻的温度值,来预测k时刻的温度.因为你相信温度是恒定的,所以你会得到k时刻的温度预测值是跟k-1时刻一样的,假定是23度,同时该值的高斯噪声的偏差是5度[5是这样得到的:如果k-1时刻最优估计误差为3,你对自己预测噪声标准差是4度,他们平方和再开方,就是5).至于为何是平方和,可以看做两个高斯过程相加[上次最优估计结果是个高斯过程,这次预测也是高斯过程],所得的也是高斯过程,方差为原先两者的方差之和)]
然后,你从温度计那里得到了 k 时刻的温度值,假设是 25 度,同时该值的噪声标准差是 4 度。 由于我们用于估算 k 时刻的实际温度有两个温度值, 分别是 23 度和 25 度。 究竟实际温度是多少呢?相信自己还是相信温度计呢?究竟相信谁多一点, 我们可以上次的估计值的噪声方差及上次的最优估计方差总和之比判断。算出比例因子Kg: Kg^2=5^2/(5^2+4^2) ,所以 Kg=0.78 ,我们可以估算出 k 时刻的实际温度值(最优估计)是: 23+0.78*(25-23)=24.56 度[估计值+Kg*(测量值-估计值)].可以看出,因为温度计的协方差比较小(比较相信温度计),所以估算出的最优温度值偏向温度计的值.
现在我们已经得到 k 时刻的最优温度值了,下一步就是要进入 k+1 时刻,进行新的最优估算。到现在为止,好像还没看到什么递归的东西出现。对了,在进入 k+1 时刻之前,我们还要算出 k 时刻那个最优值( 24.56 度)的噪声标准差。算法如下: ((1-Kg)*5^2)^0.5=2.35 。这里 的 5 就是上面的k 时刻你预测的那个 23 度温度值的标准差,得出的 2.35 就是进入 k+1 时刻以 后 k 时刻估算出的最优温度值的标准(对应于上面的 3 ) 。 就是这样,卡尔曼滤波器就不断递归,从而估算出最优的温度值。他运行的 很快, 而且它只保留了上一时刻的 最优估计误差标准差。 上面的Kg , 就是卡尔曼增益 ( Kalman Gain ) 。 他可以随不同的时刻而改变他自己的值,是不是很神奇!
这篇关于简单理解Kalman滤波的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!