判断两线段是否相交,并求交点

2024-05-30 09:58

本文主要是介绍判断两线段是否相交,并求交点,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

 

首先, 上个示意图.

根据图示, 线段a表示为端点a1和a2, 线段b表示为端点b1和b2. 为了利用向量的叉乘关系, 将线段的端点看成四个向量, 下面用粗体表示向量. 根据向量运算可知 
a=a2-a1, 
b=b2-b1. 
将线段表示为参数方程: 
a=a1 + t a 
b=b1 + u b 
其中参数t,u取值 [0,1]

两条线段相交具有如下关系: 
a1 + t a=b1 + u b 
将上式两边同时叉乘b, 得到: 
(a1+t a) x b=(b1+u b) x b 
由于b x b=0, 可得 
a1 x b + t a x b=b1 x b 
解出参数t 
t=(b1-a1)x b/(a x b) 
同理,解出参数u 
u=a x (a1-b1)/(a x b)

当0<=t<=1,且0<=u<=1时,两线段有交点. 
代入线段a的参数方程中, 即可得到线段交点坐标: 
a1+t a 
将上式中的中间变量用原始的线段端点表示, 即可得到根据线段端点表示的交点.

code 1

// Returns 1 if the lines intersect, otherwise 0. In addition, if the lines 
// intersect the intersection point may be stored in the floats i_x and i_y.
char get_line_intersection(float p0_x, float p0_y, float p1_x, float p1_y, 
    float p2_x, float p2_y, float p3_x, float p3_y, float *i_x, float *i_y)
{
    float s1_x, s1_y, s2_x, s2_y;
    s1_x = p1_x - p0_x;     s1_y = p1_y - p0_y;
    s2_x = p3_x - p2_x;     s2_y = p3_y - p2_y;

    float s, t;
    s = (-s1_y * (p0_x - p2_x) + s1_x * (p0_y - p2_y)) / (-s2_x * s1_y + s1_x * s2_y);
    t = ( s2_x * (p0_y - p2_y) - s2_y * (p0_x - p2_x)) / (-s2_x * s1_y + s1_x * s2_y);

    if (s >= 0 && s <= 1 && t >= 0 && t <= 1)
    {
        // Collision detected
        if (i_x != NULL)
            *i_x = p0_x + (t * s1_x);
        if (i_y != NULL)
            *i_y = p0_y + (t * s1_y);
        return 1;
    }

    return 0; // No collision
}
code 2

优化版本,排除线段平行情况,避免精度误差

int get_line_intersection(float p0_x, float p0_y, float p1_x, float p1_y, 
    float p2_x, float p2_y, float p3_x, float p3_y, float *i_x, float *i_y)
{
    float s02_x, s02_y, s10_x, s10_y, s32_x, s32_y, s_numer, t_numer, denom, t;
    s10_x = p1_x - p0_x;
    s10_y = p1_y - p0_y;
    s32_x = p3_x - p2_x;
    s32_y = p3_y - p2_y;

    denom = s10_x * s32_y - s32_x * s10_y;
    if (denom == 0)//平行或共线
        return 0; // Collinear
    bool denomPositive = denom > 0;

    s02_x = p0_x - p2_x;
    s02_y = p0_y - p2_y;
    s_numer = s10_x * s02_y - s10_y * s02_x;
    if ((s_numer < 0) == denomPositive)//参数是大于等于0且小于等于1的,分子分母必须同号且分子小于等于分母
        return 0; // No collision

    t_numer = s32_x * s02_y - s32_y * s02_x;
    if ((t_numer < 0) == denomPositive)
        return 0; // No collision

    if (fabs(s_numer) > fabs(denom) || fabs(t_numer) > fabs(denom))
        return 0; // No collision
    // Collision detected
    t = t_numer / denom;
    if (i_x != NULL)
        *i_x = p0_x + (t * s10_x);
    if (i_y != NULL)
        *i_y = p0_y + (t * s10_y);

    return 1;
}

这篇关于判断两线段是否相交,并求交点的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1016107

相关文章

Python判断for循环最后一次的6种方法

《Python判断for循环最后一次的6种方法》在Python中,通常我们不会直接判断for循环是否正在执行最后一次迭代,因为Python的for循环是基于可迭代对象的,它不知道也不关心迭代的内部状态... 目录1.使用enuhttp://www.chinasem.cnmerate()和len()来判断for

shell脚本快速检查192.168.1网段ip是否在用的方法

《shell脚本快速检查192.168.1网段ip是否在用的方法》该Shell脚本通过并发ping命令检查192.168.1网段中哪些IP地址正在使用,脚本定义了网络段、超时时间和并行扫描数量,并使用... 目录脚本:检查 192.168.1 网段 IP 是否在用脚本说明使用方法示例输出优化建议总结检查 1

如何测试计算机的内存是否存在问题? 判断电脑内存故障的多种方法

《如何测试计算机的内存是否存在问题?判断电脑内存故障的多种方法》内存是电脑中非常重要的组件之一,如果内存出现故障,可能会导致电脑出现各种问题,如蓝屏、死机、程序崩溃等,如何判断内存是否出现故障呢?下... 如果你的电脑是崩溃、冻结还是不稳定,那么它的内存可能有问题。要进行检查,你可以使用Windows 11

poj 3259 uva 558 Wormholes(bellman最短路负权回路判断)

poj 3259: 题意:John的农场里n块地,m条路连接两块地,w个虫洞,虫洞是一条单向路,不但会把你传送到目的地,而且时间会倒退Ts。 任务是求你会不会在从某块地出发后又回来,看到了离开之前的自己。 判断树中是否存在负权回路就ok了。 bellman代码: #include<stdio.h>const int MaxN = 501;//农场数const int

poj 1127 线段相交的判定

题意: 有n根木棍,每根的端点坐标分别是 px, py, qx, qy。 判断每对木棍是否相连,当他们之间有公共点时,就认为他们相连。 并且通过相连的木棍相连的木棍也是相连的。 解析: 线段相交的判定。 首先,模板中的线段相交是不判端点的,所以要加一个端点在直线上的判定; 然后,端点在直线上的判定这个函数是不判定两个端点是同一个端点的情况的,所以要加是否端点相等的判断。 最后

zoj 1721 判断2条线段(完全)相交

给出起点,终点,与一些障碍线段。 求起点到终点的最短路。 枚举2点的距离,然后最短路。 2点可达条件:没有线段与这2点所构成的线段(完全)相交。 const double eps = 1e-8 ;double add(double x , double y){if(fabs(x+y) < eps*(fabs(x) + fabs(y))) return 0 ;return x + y ;

POJ1269 判断2条直线的位置关系

题目大意:给两个点能够确定一条直线,题目给出两条直线(由4个点确定),要求判断出这两条直线的关系:平行,同线,相交。如果相交还要求出交点坐标。 解题思路: 先判断两条直线p1p2, q1q2是否共线, 如果不是,再判断 直线 是否平行, 如果还不是, 则两直线相交。  判断共线:  p1p2q1 共线 且 p1p2q2 共线 ,共线用叉乘为 0  来判断,  判断 平行:  p1p

Codeforces Round #113 (Div. 2) B 判断多边形是否在凸包内

题目点击打开链接 凸多边形A, 多边形B, 判断B是否严格在A内。  注意AB有重点 。  将A,B上的点合在一起求凸包,如果凸包上的点是B的某个点,则B肯定不在A内。 或者说B上的某点在凸包的边上则也说明B不严格在A里面。 这个处理有个巧妙的方法,只需在求凸包的时候, <=  改成< 也就是说凸包一条边上的所有点都重复点都记录在凸包里面了。 另外不能去重点。 int

圆与线段的交点

poj 3819  给出一条线段的两个端点,再给出n个圆,求出这条线段被所有圆覆盖的部分占了整条线段的百分比。 圆与线段的交点 : 向量AB 的参数方程  P = A + t * (B - A)      0<=t<=1 ; 将点带入圆的方程即可。  注意: 有交点 0 <= t <= 1 ; 此题求覆盖的部分。 则 若求得 t  满足 ; double ask(d

easyui同时验证账户格式和ajax是否存在

accountName: {validator: function (value, param) {if (!/^[a-zA-Z][a-zA-Z0-9_]{3,15}$/i.test(value)) {$.fn.validatebox.defaults.rules.accountName.message = '账户名称不合法(字母开头,允许4-16字节,允许字母数字下划线)';return fal